Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:50:15.978Z Has data issue: false hasContentIssue false

Stability of microstructure for tetragonal to monoclinic martensitic transformations

Published online by Cambridge University Press:  15 April 2002

Pavel Belik
Affiliation:
School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455, USA; ([email protected])
Mitchell Luskin
Affiliation:
School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455, USA; ([email protected])
Get access

Abstract

We give an analysis of the stability and uniqueness of the simplylaminated microstructure for all three tetragonal to monoclinicmartensitic transformations. The energy density for tetragonal tomonoclinic transformations has four rotationally invariant wells sincethe transformation has four variants. One of these tetragonal tomonoclinic martensitic transformations corresponds to the shearing ofthe rectangular side, one corresponds to the shearing of the squarebase, and one corresponds to the shearing of the plane orthogonal to adiagonal in the square base. We show that the simply laminatedmicrostructure is stable except for a class of special materialparameters. In each case that the microstructure is stable, we deriveerror estimates for the finite element approximation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Adams. Sobolev Spaces. Academic Press, New York (1975).
Ball, J. and James, R., Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. CrossRef
Ball, J. and James, R., Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. CrossRef
Bhattacharya, K., Self accomodation in martensite. Arch. Rat. Mech. Anal. 120 (1992) 201-244. CrossRef
K. Bhattacharya and G. Dolzmann, Relaxation of some multiwell problems, in Proc. R. Soc. Edinburgh: Section A, to appear.
Bhattacharya, K., Li, B. and Luskin, M., The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (2000) 123-154. CrossRef
Brighi, B. and Chipot, M., Approximation of infima in the calculus of variations. J. Comput. Appl. Math. 98 (1998) 273-287. CrossRef
Carstensen, C. and Plechác, P., Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. , 66 (1997) 997-1026. CrossRef
Carstensen, C. and Plechác, P., Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. CrossRef
Chipot, M., Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. CrossRef
Chipot, M. and Collins, C., Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal. 29 (1992) 1002-1019. CrossRef
Chipot, M., Collins, C., and Kinderlehrer, D., Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282 . CrossRef
Chipot, M. and Kinderlehrer, D., Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. CrossRef
M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of nonconvex problems. (preprint, 1997).
Collins, C., Kinderlehrer, D., and Luskin, M., Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. CrossRef
Collins, C. and Luskin, M., Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. CrossRef
B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, (1989).
Dolzmann, G., Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. CrossRef
French, D., On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer. Anal. 28 (1991) 419-436.
Jian, L. and James, R., Prediction of microstructure in monoclinic LaNbO4 by energy minimization. Acta Mater. 45 (1997) 4271-4281. CrossRef
Kinderlehrer, D. and Pedregal, P., Characterizations of gradient Young measures. Arch. Rat. Mech. Anal. 115 (1991) 329-365. CrossRef
Kruzík, M., Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. CrossRef
Li, B. and Luskin, M., Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. CrossRef
B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67(223) (1998) 917-946.
Li, B. and Luskin, M., Approximation of a martensitic laminate with varying volume fractions. Math. Model. Numer. Anal. 33 (1999) 67-87. CrossRef
Simultaneous, Z. Li numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38.
Luskin, M., Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. CrossRef
M. Luskin, On the computation of crystalline microstructure. Acta Numer. (1996) 191-257.
M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 320-331.
Nicolaides, R. and Walkington, N., Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. CrossRef
Pedregal, P., Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16 (1995) 1049-1066. CrossRef
Pedregal, P., On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. CrossRef
Roubícek, T., Numerical approximation of relaxed variational problems. J. Convex Anal. 3 (1996) 329-347.
Simha, N., Crystallography of the tetragonal → monoclinic transformation in zirconia. J. Phys. IV Colloq. France 5 (1995) C81121-C81126. CrossRef
Simha, N., Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia. J. Mech. Phys. Solids 45 (1997) 261-292. CrossRef
V. Sverák, Lower-semicontinuity of variational integrals and compensated compactness, in Proceedings ICM 94, Zürich (1995). Birkhäuser.
L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear analysis and mechanics, R. Knops, Ed., Pitman Research Notes in Mathematics, London 39 (1978) 136-212.
Zanzotto, G., Twinning in minerals and metals: remarks on the comparison of a thermoelasticity theory with some available experimental results. Atti Acc. Lincei Rend. Fis. 82 (1988) 725-756.