Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T20:15:22.407Z Has data issue: false hasContentIssue false

The Singularity Expansion Method applied to the transient motions of a floating elastic plate

Published online by Cambridge University Press:  23 October 2007

Christophe Hazard
Affiliation:
Laboratoire POEMS, UMR 2706 CNRS/ENSTRA/INRIA, École Nationale Supérieure de Techniques Avancées, 32 boulevard Victor, 75739 Paris Cedex 15, France. [email protected]
François Loret
Affiliation:
Glaizer Group, Agence en Innovation, 15 bis rue Jean Jaurès, 92260 Fontenay-aux-Roses, France. [email protected]
Get access

Abstract

In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles of the analytic continuation called resonances of the system, and a low frequency component associated to a branch point at frequency zero.We present the mathematical analysis of this method for the two-dimensional sea-keeping problem of a thin elastic plate (ice floe, floating runway, ...) and provide some numerical results to illustrate and discuss its efficiency.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New York, 9th edn. (1970).
Aguilar, J. and Combes, J.M., A class of analytic perturbations for one-body Schrödinger hamiltonians. Comm. Math. Phys. 22 (1971) 269279. CrossRef
C. Alves and T. Ha Duong, Numerical experiments on the resonance poles associated to acoustic and elastic scattering by a plane crack, in Mathematical and Numerical Aspects of Wave Propagation, E. Bécache et al. Eds., SIAM (1995).
Amrouche, C., The Neumann problem in the half-space. C. R. Acad. Sci. Paris Ser. I 335 (2002) 151156. CrossRef
Bachelot, A. and Motet-Bachelot, A., Les résonances d'un trou noir de Schwarzschild. Ann. Henri. Poincarré 59 (1993) 280294.
Balslev, E. and Combes, J.M., Spectral properties of many body Schrödinger operators with dilation analytic interactions. Comm. Math. Phys. 22 (1971) 280294. CrossRef
C.E. Baum, The Singularity Expansion Method, in Transient Electromagnetic Fields, L.B. Felsen Ed., Springer-Verlag, New York (1976).
H. Brezis, Analyse fonctionnelle, Théorie et application. Masson, Paris (1983).
Burq, N. and Zworski, M., Resonance expansions in semi-classical propagation. Comm. Math. Phys. 232 (2001) 112. CrossRef
Carpentier, M.P. and Dos Santos, A.F., Solution of equations involving analytic functions. J. Comput. Phys. 45 (1982) 210220. CrossRef
Ciarlet, P.G. and Destuynder, P., A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979) 315344.
R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Dunod, Paris (1984).
R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3, Dunod, Paris (1985).
L.B. Felsen and E. Heyman, Hybrid ray mode analysis of transient scattering, in Low and Frequency Asymptotics, V.K. Varadan and V.V. Varadan Eds. (1986).
Habault, D. and Filippi, P.J.T., Light fluid approximation for sound radiation and diffraction by thin elastic plates. J. Sound Vibration 213 (1998) 333374. CrossRef
C. Hazard, The Singularity Expansion Method, in Fifth International Conference on Mathematical and Numerical Aspects of Wave propagation, SIAM (2000) 494–498.
Hazard, C. and Lenoir, M., Determination of scattering frequencies for an elastic floating body. SIAM J. Math. Anal. 24 (1993) 14581514. CrossRef
C. Hazard and F. Loret, Generalized eigenfunction expansions for conservative scattering problems with an application to water waves. Proceedings of the Royal Society of Edinburgh (2007) Accepted.
T. Kato, Perturbation theory for linear operators. Springer-Verlag, New York (1984).
Klopp, F. and Zworski, M., Generic simplicity of resonances. Helv. Phys. Acta 8 (1995) 531538.
K. Knopp, Theory of functions, Part II. Dover, New York (1947).
P. Kravanja and M. Van Barel, Computing the zeros of analytic functions. Lect. Notes Math. 1727, Springer (2000).
N. Kuznetsov, V. Maz'ya and B. Vainberg, Linear Water Waves, a Mathematical Approach. Cambridge (2002).
C. Labreuche, Problèmes inverses en diffraction d'ondes basés sur la notion de résonances. Ph.D. thesis, University of Paris IX, France (1997).
Lax, P.D. and Phillips, R.S., Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure Appl. Math. 22 (1969) 737787. CrossRef
Lenoir, M., Vullierme-Ledard, M. and Hazard, C., Variational formulations for the determination of resonant states in scattering problems. SIAM J. Math. Anal. 23 (1992) 579608. CrossRef
T.-Y. Li, On locating all zeros of an analytic function within a bounded domain by a revised Delvess/Lyness method. SIAM J. Numer. Anal. 20 (1983).
F. Loret, Time-harmonic or resonant states decomposition for the simulation of the time-dependent solution of a sea-keeping problem. Ph.D. thesis, Centrale Paris school, France (2004).
Majda, G., Strauss, W. and Wei, M., Numerical computation of the scattering frequencies for acoustic wave equations. Comput. Phys. 75 (1988) 345358.
Maskell, S.J. and Ursell, F., The transient motion of a floating body. J. Fluid Mech 44 (1970) 303313. CrossRef
Maury, C. and Filippi, P.J.T., Transient acoustic diffraction and radiation by an axisymmetrical elastic shell: a new statement of the basic equations and a numerical method based on polynomial approximations. J. Sound Vibration 241 (2001) 459483. CrossRef
Meylan, M.H., Spectral solution of time dependent shallow water hydroelasticity. J. Fluid Mech. 454 (2002) 387402. CrossRef
L.W. Pearson, D.R. Wilton and R. Mittra, Some implications of the Laplace transform inversion on SEM coupling coefficients in the time domain, in Electromagnetics, Hemisphere Publisher, Washington DC 2 (1982) 181–200.
Poisson, O., Étude numérique des pôles de résonance associés à la diffraction d'ondes acoustiques et élastiques par un obstacle en dimension 2. RAIRO Modèle. Anal. Numér. 29 (1995) 819855.
R.J. Prony, L'École Polytechnique (Paris), 1, cahier 2, 24 (1795).
Sarkar, T.K., Park, S., Koh, J. and Rao, S., Application of the matrix pencil method for estimating the SEM (Singularity Expansion Method) poles of source-free transient responses from multiple look directions. IEEE Trans. Antennas Propagation 48 (2000) 612618. CrossRef
R.H. Schafer and R.G. Kouyoumjian, Transient currents on a cylinder illuminated by an impulsive plane wave. IEEE Trans. Antennas Propagation ap-23 (1975) 627–638.
Steinberg, S., Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31 (1968) 372380. CrossRef
Tang, S.H. and Zworski, M., Resonance expansions of scattered waves. Comm. Pure Appl. Math. 53 (2000) 13051334. 3.0.CO;2-#>CrossRef
Tijhuis, A.G. and van der Weiden, R.M., SEM approach to transient scattering by a lossy, radially inhomogeneous dielectric circular cylinder. Wave Motion 8 (1986) 4363. CrossRef
Überall, H. and Gaunard, G.C., The physical content of the singularity expansion method. Appl. Plys. Lett. 39 (1981) 362364.
B.R. Vainberg, Asymptotic methods in equations of mathematical physics. Gordon and Breach Science Publishers (1989).
J.V. Wehausen and E.V. Laitone, Surface waves, in Hanbuch der Physik IX, Springer-Verlag, Berlin (1960).