Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T20:12:44.777Z Has data issue: false hasContentIssue false

A simple and efficient scheme for phase field crystalsimulation

Published online by Cambridge University Press:  30 July 2013

Matt Elsey
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York.. [email protected],[email protected]
Benedikt Wirth
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York.. [email protected],[email protected]
Get access

Abstract

We propose an unconditionally stable semi-implicit time discretization of the phase fieldcrystal evolution. It is based on splitting the underlying energy into convex and concaveparts and then performing H-1 gradient descent steps implicitly for the formerand explicitly for the latter. The splitting is effected in such a way that the resultingequations are linear in each time step and allow an extremely simple implementation andefficient solution. We provide the associated stability and error analysis as well asnumerical experiments to validate the method’s efficiency.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athreya, B.P., Goldenfeld, N., Dantzig, J.A., Greenwood, M. and Provatas, N., Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model. Phys. Rev. E 76 (2007) 056706. Google ScholarPubMed
Bertozzi, A.L., Esedoglu, S. and Gillette, A., Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16 (2007) 285291. Google ScholarPubMed
Cheng, M. and Warren, J.A., An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227 (2008) 62416248. Google Scholar
Elder, K.R. and Grant, M., Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70 (2004) 051605. Google ScholarPubMed
Elder, K.R., Katakowski, M., Haataja, M. and Grant, M., Modeling elasticity in crystal growth. Phys. Rev. Lett. 88 (2002) 245701. Google ScholarPubMed
Elder, K.R., Provatas, N., Berry, J., Stefanovic, P. and Grant, M., Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75 (2007) 064107. Google Scholar
D. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, in Computational and mathematical models of microstructural evolution, edited by J.W. Bullard, R. Kalia, M. Stoneham and L.Q. Chen. Warrendale, PA, Materials Research Society 53 (1998) 1686–1712.
Glasner, K., A diffuse interface approach to Hele–Shaw flow. Nonlinearity 16 (2003) 4966. Google Scholar
Khenner, M., Averbuch, A., Israeli, M. and Nathan, M., Numerical simulation of grain-boundary grooving by level set method. J. Comput. Phys. 170 (2001) 764784. Google Scholar
Lyness, J.N. and McHugh, B.J.J., On the remainder term in the N-dimensional Euler Maclaurin expansion. Numer. Math. 15 (1970) 333344. Google Scholar
Smereka, P., Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19 (2003) 439456. Special issue in honor of the sixtieth birthday of Stanley Osher. Google Scholar
Wise, S.M., Wang, C. and Lowengrub, J.S., An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 22692288. Google Scholar
Wu, K.-A. and Karma, A., Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys. Rev. B 76 (2007) 184107. Google Scholar
Wu, K.-A., Plapp, M. and Voorhees, P.W., Controlling crystal symmetries in phase-field crystal models. J. Phys. Condensed Matter 22 (2010) 364102. Google ScholarPubMed
Wu, K.-A. and Voorhees, P.W., Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Phys. Rev. B 80 (2009) 125408. Google Scholar
Yeon, D.-H., Huang, Z.-F., Elder, K. and Thornton, K., Density-amplitude formulation of the phase-field crystal model for two–phase coexistence in two and three dimensions. Philosophical Magazine 90 (2010) 237263. Google Scholar