Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T19:22:44.833Z Has data issue: false hasContentIssue false

A priori error estimates for astate-constrained elliptic optimal control problem

Published online by Cambridge University Press:  13 February 2012

Arnd Rösch
Affiliation:
Universität Duisburg-Essen, Fakultät für Mathematik, Forsthausweg 2, 47057 Duisburg, Germany. [email protected]
Simeon Steinig
Affiliation:
Universität Stuttgart, Institut für Angewandte Analysis und Numerische Simulation, Pfaffenwaldring 57, 70569 Stuttgart, Germany; [email protected]
Get access

Abstract

We examine an elliptic optimal control problem with control and state constraints inℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisationinvolving piecewise constant functions for the control and piecewise linear for the state.The derived order of convergence is illustrated by a numerical example.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press, San Diego (2007).
Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623727. Google Scholar
Barrett, J.W. and Elliott, C.M., A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309325. Google Scholar
J. Bergh and J. Löfström, Interpolation spaces. Springer, Berlin (1976).
Bergounioux, M., Ito, K. and Kunisch, K., Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 11761194. Google Scholar
Casas, E., Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 13091322. Google Scholar
Casas, E. and Tröltzsch, F., Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581600. Google Scholar
Cherednichenko, S. and Rösch, A., Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195212. Google Scholar
S. Cherednichenko, K. Krumbiegel and A. Rösch, Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008).
P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002).
de los Reyes, J.C., Meyer, C. and Vexler, B., Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251284. Google Scholar
Deckelnick, K. and Hinze, M., Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 19371953. Google Scholar
K. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597–604.
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
Hintermüller, M., Ito, K. and Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865888. Google Scholar
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin (2009).
Kunisch, K. and Rösch, A., Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321334. Google Scholar
Meyer, C., Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 5185. Google Scholar
Meyer, C., Rösch, A. and Tröltzsch, F., Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209228. Google Scholar
P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer-Verlag, New York (2006).
Rannacher, R., Zur L -Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 6977. Google Scholar
Rösch, A. and Tröltzsch, F., Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548564. Google Scholar
Schatz, A.H., Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877899. Google Scholar
Schatz, A.H. and Wahlbin, L.B., Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414442. Google Scholar
Schatz, A.H. and Wahlbin, L.B., On the quasi-optimality in L of the \hbox{$\mathring{H}^{1}$}˚H1 -projection into finite element spaces. Math. Comput. 38 (1982) 122. Google Scholar
A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000).
Tröltzsch, F., Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616634. Google Scholar
F. Tröltzsch, Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).
Zanger, D.Z., The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 17711808. Google Scholar