Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T19:02:22.487Z Has data issue: false hasContentIssue false

On the convergence of a linear two-step finite element methodfor the nonlinear Schrödinger equation

Published online by Cambridge University Press:  15 April 2002

Georgios E. Zouraris*
Affiliation:
Department of Numerical Analysis and Computing Science (NADA), Royal Institute of Technology (KTH), 10044 Stockholm, Sweden. : Centre de Recherche en Mathématiques de la Décision (CEREMADE), UMR CNRS 7534, Université de Paris IX-Dauphine, Place du Maréchal de Lattre-de-Tassigny, 75775 Paris Cedex 16, France.
Get access

Abstract

We discretize the nonlinear Schrödinger equation,with Dirichlet boundary conditions, by a linearlyimplicit two-step finite element method which conserves the L 2 norm. We prove optimal order a priori error estimates in the L 2 and H 1 norms, under mild mesh conditions for two and three space dimensions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhamanov, S.A., Sukhonorov, A.P. and Khoklov, R.V., Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP 23 (1966) 1025-1033.
Akrivis, G.D., Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115-124. CrossRef
Akrivis, G.D., Dougalis, V.A. and Karakashian, O.A., On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31-53. CrossRef
S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15, Springer-Verlag, New York (1994).
Brezis, H. and Gallouet, T., Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4 (1980) 677-681. CrossRef
T. Cazenave and A. Haraux, Introduction aux problémes d'évolution semi-linéaires. Ellipses, Paris (1990).
Chiao, R.Y., Garmire, E. and Townes, C., Self-trapping of optical beams. Phys. Rev. Lett. 13 (1964) 479-482. CrossRef
Cloot, A., Herbst, B.M. and Weideman, J.A.C., A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys. 86 (1990) 127-146. CrossRef
Fei, Z., Pérez-García, V.M. and Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177.
Jingqi, Y., Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in $\mathbb R^2$ . Nonlinear Analysis 19 (1992) 563-571. CrossRef
Karakashian, O., Akrivis, G.D. and Dougalis, V.A., On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377-400. CrossRef
Karakashian, O. and Makridakis, Ch., A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. CrossRef
Lee, H.Y., Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 28 (1994) 9-24. CrossRef
Levine, H.A., The role of critical exponents in blowup theorems. SIAM Review 32 (1990) 262-288. CrossRef
Nawa, H., Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan 46 (1994) 557-586. CrossRef
A.C. Newell, Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser. 48, SIAM, Philadelphia (1988).
Rasmussen, J.J. and Rypdal, K., Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta 33 (1986) 481-497. CrossRef
Robinson, M.P. and Fairweather, G., Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68 (1994) 355-376. CrossRef
Rypdal, K. and Rasmussen, J.J., Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta 33 (1986) 498-504. CrossRef
Sanz-Serna, J.M., Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp. 43 (1984) 21-27. CrossRef
W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989).
Talanov, V.I., Self-focusing of wave beams in nonlinear media. JETP Lett. 2 (1965) 138-141.
V. Thomée, Galerkin finite-element methods for parabolic problems. Springer Series Comput. Math. 25, Springer-Verlag, Berlin, Heidelberg (1997).
Tourigny, Y., Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509-523. CrossRef
Tsutsumi, M. and Hayashi, N., Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z. 177 (1981) 217-234. CrossRef
Zakharov, V.E., Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908-922.