Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T17:18:22.619Z Has data issue: false hasContentIssue false

On a probabilistic interpretation of shape derivativesof Dirichlet groundstateswith application to Fermion nodes

Published online by Cambridge University Press:  26 August 2010

Mathias Rousset*
Affiliation:
INRIA Lille, Nord Europe & Université Lille 1, Villeneuve d'Ascq, France. [email protected]
Get access

Abstract

This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the case of the so-called fixed node approximation of Fermion groundstates, defined by the bottom eigenelements of the Schrödinger operator of a Fermionic system with Dirichlet conditions on the nodes (the set of zeros) of an initially guessed skew-symmetric function. We show that shape derivatives of the fixed node energy vanishes if and only if either (i) the distribution on the nodes of the stopped random process is symmetric; or (ii) the nodes are exactly the zeros of a skew-symmetric eigenfunction of the operator. We propose an approximation of the shape derivative of the fixed node energy that can be computed with a Monte-Carlo algorithm, which can be referred to as Nodal Monte-Carlo (NMC). The latter approximation of the shape derivative also vanishes if and only if either (i) or (ii) holds.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Assaraf and M. Caffarel, A pedagogical introduction to Quantum Monte Carlo, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, M. Defranceschi and C. Le Bris Eds., Lecture Notes in Chemistry 74, Springer (2000).
Assaraf, R. and Caffarel, M., Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces. J. Chem. Phys. 119 (2003) 1053610552. CrossRef
Assaraf, R., Caffarel, M. and Khelif, A., Diffusion Monte-Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 45664575. CrossRef
Badinski, A. and Needs, R.J., Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials. Phys. Rev. B 78 (2008) 035134. CrossRef
Badinski, A., Haynes, P.D. and Needs, R.J., Pulay, Nodal terms for accurate diffusion quantum Monte Carlo forces. Phys. Rev. B 77 (2008) 085111. CrossRef
Cancès, E., Jourdain, B. and Lelièvre, T., Quantum Monte-Carlo simulations of Fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Meth. Appl. Sci. 16 (2006) 14031440. CrossRef
E. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en chimie quantique : Une introduction. Springer-Verlag (2006).
Casalegno, M., Mella, M. and Rappe, A.M., Computing accurate forces in quantum Monte Carlo using Pulay's corrections and energy minimization. J. Chem. Phys. 118 (2003) 71937201. CrossRef
Ceperley, D.M., Fermion nodes. J. Stat. Phys. 63 (1991) 12371267. CrossRef
Ceperley, D.M. and Ground, B.J. Alder state of the electron gas by a stochastic method. Phys. Rev. Lett. 45 (1980) 566569. CrossRef
Ceperley, D., Chester, G.V. and Kalos, M.H., Monte-Carlo simulation of a many-fermion study. Phys. Rev. B 16 (1977) 30813099. CrossRef
Costantini, C., Gobet, E. and El Karoui, N., Boundary sensitivities for diffusion processes in time dependent domains. Appl. Math. Optim. 54 (2006) 159187. CrossRef
P. Del Moral, Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer Series Probability and its Applications, Springer (2004).
Del Moral, P. and Miclo, L., Branching and Interacting Particle Systems approximations of Feynman-Kac formulae with applications to nonlinear filtering. Lecture Notes Math. 1729 (2000) 1145. CrossRef
Del Moral, P. and Miclo, L., Particle approximations of Lyapounov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171208. CrossRef
A. Doucet, N. de Freitas and N.J. Gordon, Sequential Monte-Carlo Methods in Practice. Series Statistics for Engineering and Information Science, Springer (2001).
Doucet, A., Del Moral, P. and Jasra, A., Sequential Monte Carlo samplers. J. Roy. Stat. Soc. B 68 (2006) 411436.
Filippi, C. and Umrigar, C.J., Correlated sampling in quantum Monte Carlo: A route to forces. Phys. Rev. B 61 (2000) R16291R16294. CrossRef
J. Garcia Melian and J.S. De Lis, On the perurbation of eigenvalues for the p-laplacian. C. R. Acad. Sci. Paris, Sér. 1 332 (2001) 893–898.
D. Gildbarg and N.S. Trudinger, Elliptic Partial Differential Equation of Second Order. Springer-Verlag (1983).
B.L. Hammond, W.A. Lester and P.J. Reynolds, Monte Carlo Methods in ab initio quantum chemistry. World Scientific (1994).
Hongxin, H. and Liu, S., An improved algorithm of fixed-node quantum Monte Carlo method with self-optimization process. J. Mol. Struct. Theochem 726 (2005) 9397. CrossRef
I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113. Second edition, Springer-Verlag, New York (1991).
T. Kato, Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften 132. Second edition Springer-Verlag, Berlin (1976).
M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1978).
Rousset, M., On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824844. CrossRef
Toulouse, J. and Umrigar, C.J., Optimization of quantum Monte Carlo wave functions by energy minimization. J. Chem. Phys. 126 (2007) 084102. CrossRef
Toulouse, J., Assaraf, R. and Umrigar, C.J., Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density. J. Chem. Phys. 126 (2007) 244112. CrossRef
Umrigar, C.J. and Filippi, C., Energy and variance optimization of many-body wave functions. Phys. Rev. Lett. 94 (2005) 150201. CrossRef