Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T08:55:05.357Z Has data issue: false hasContentIssue false

Numerical simulation of a point-source initiated flame ball with heat losses

Published online by Cambridge University Press:  15 May 2002

Jacques Audounet
Affiliation:
UFR MIG, UMR CNRS 5640, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France. [email protected].
Jean-Michel Roquejoffre
Affiliation:
UFR MIG, UMR CNRS 5640, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France. [email protected].
Hélène Rouzaud
Affiliation:
UFR MIG, UMR CNRS 5640, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France. [email protected].
Get access

Abstract

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audounet, J., Giovangigli, V. and Roquejoffre, J.-M., A threshold phenomenon in the propagation of a point source initiated flame. Phys. D 121 (1998) 295-316. CrossRef
J. Audounet and J.-M. Roquejoffre, An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis. Systèmes différentiels fractionnaires: Modèles, Méthodes et Applications, Matignon & Montseny Eds, ESAIM Proc. 5 (1998).
Bolley, C. and Crouzeix, M., Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér. 3 (1978) 237-245. CrossRef
Brunner, H., A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 3 (1982) 213-229. CrossRef
Buckmaster, J., Joulin, G. and Ronney, P., The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (1990) 381-392. CrossRef
Buckmaster, J., Joulin, G. and Ronney, P., The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame 84 (1991) 411-422. CrossRef
R. Gorenflo and S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991).
Joulin, G., Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 43 (1985) 99-113. CrossRef
O.A. Ladyzhenskaya, N.N. Uraltseva and S.N. Solonnikov, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968).
Lubich, C., Discretized fractional calculus. SIAM J. Math. Anal. 3 (1986) 704-719. CrossRef
Lubich, C. and Ostermann, A., Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555-583. CrossRef
Rouzaud, H., Dynamique d'un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1 332 (2001) 1083-1086. CrossRef