Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T22:35:28.798Z Has data issue: false hasContentIssue false

Numerical evidence of nonuniqueness in the evolutionof vortex sheets

Published online by Cambridge University Press:  21 June 2006

Milton C. Lopes Filho
Affiliation:
Departamento de Matematica, IMECC-UNICAMP, Caixa Postal 6065, Campinas, SP 13081-970, Brasil. [email protected]; [email protected] Research supported in part by CNPq grant # 300.962/91-6 and FAPESP grants # 96/07635-4 and # 97/13855-0.
John Lowengrub
Affiliation:
Department of Mathematics, Univ. of California at Irvine, Irvine, CA 92697, USA. [email protected] Partially supported by the National Science Foundation, Division of Mathematical Sciences, and the Minnesota Supercomputer Institute.
Helena J. Nussenzveig Lopes
Affiliation:
Departamento de Matematica, IMECC-UNICAMP, Caixa Postal 6065, Campinas, SP 13081-970, Brasil. [email protected]; [email protected] Research supported in part by CNPq grant # 300.962/91-6 and FAPESP grants # 96/07635-4 and # 97/13855-0.
Yuxi Zheng
Affiliation:
Departament of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA. [email protected] Research supported in part by the NSF-DMS grants 9703711, 0305497, 0305114 and by the Sloan Foundation.
Get access

Abstract


We consider a special configuration of vorticity that consists of a pair ofexternally tangent circular vortex sheets, each having a circularly symmetric core of bounded vorticity concentric to the sheet, and each core precisely balancing the vorticity mass of the sheet. This configuration is a stationary weak solution of the 2D incompressible Euler equations. We propose to perform numerical experiments to verify that certain approximations of this flow configuration converge to a non-stationary weak solution. Preliminary simulations presented here suggest this isindeed the case. We establish a convergence theorem for the vortex blob method that applies to this problem. This theorem and the preliminary calculations we carried out support the existence of two distinct weak solutions with the same initial data.


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.R. and Beale, J.T., Vortex blob methods applied to interfacial motion. J. Comput. Phys. 196 (2004) 233258. CrossRef
Caflisch, R. and Orellana, O., Long time existence for a slightly perturbed vortex sheet. Comm. Pure Appl. Math. 39 (1986) 807838. CrossRef
Caflisch, R. and Orellana, O., Singularity solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20 (1989) 293307. CrossRef
Chemin, J.-Y., A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differential Equations 21 (1996) 17711779.
Chorin, A. and Bernard, P., Discretization of a vortex sheet with an example of roll-up. J. Comput. Phys. 13 (1973) 423429. CrossRef
Delort, J.-M., Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4 (1991) 553586. CrossRef
R. DiPerna and A. Majda, Concentrations and regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. XL (1987) 301–345.
DiPerna, R. and Majda, A., Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow. J. Am. Math. Soc. 1 (1988) 5995.
Duchon, J. and Robert, R., Global vortex sheet solutions of Euler equations in the plane. Comm. Partial Differential Equations 73 (1988) 215224.
Ebin, D., Ill-posedness of the Rayleigh-Taylor and Helmholtz problem for incompressible fluids. Comm. Partial Differential Equations 73 (1988) 12651295. CrossRef
L.C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics 74 A.M.S., Providence, RI (1990).
Greengard, C. and Thomann, E., DiPerna-Majda, On concentration sets for two-dimensional incompressible flow. Comm. Pure Appl. Math. 41 (1988) 295303. CrossRef
Krasny, R., Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65 (1986) 292313. CrossRef
Krasny, R., Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184 (1987) 123155. CrossRef
Krasny, R. and Nitsche, M., The onset of chaos in vortex sheet flow. J. Fluid Mech. 454 (2002) 4769. CrossRef
Lebeau, G., Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2D. ESAIM: COCV 8 (2002) 801825. CrossRef
J.G. Liu and Z.P. Xin, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data. Comm. Pure Appl. Math. XLVIII (1995) 611–628.
Lopes Filho, M.C., Nussenzveig Lopes, H.J. and Zheng, Y.X., Convergence of the vanishing viscosity approximation for superpositions of confined eddies. Commun. Math. Phys. 201 (1999) 291304. CrossRef
Lopes Filho, M.C., Nussenzveig Lopes, H.J. and Tadmor, E., Approximate solutions of the incompressible Euler equations with no concentrations. Ann. I. H. Poincaré-An. 17 (2000) 371412. CrossRef
Lopes Filho, M.C., Nussenzveig Lopes, H.J. and Xin, Z.P., Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Rational Mech. Anal. 158 (2001) 235257. CrossRef
Lopes Filho, M.C., Nussenzveig Lopes, H.J. and Souza, M.O., On the equation satisfied by a steady Prandtl-Munk vortex sheet. Comm. Math. Sci. 1 (2003) 6873. CrossRef
Majda, A., Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana U. Math J. 42 (1993) 921939. CrossRef
Majda, A., Majda, G. and Zheng, Y.X., Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case. Physica D 74 (1994) 268300. CrossRef
M. Nitsche, M.A. Taylor and R. Krasny, Comparison of regularizations of vortex sheet motion, Proc. 2nd MIT Conf. Comput. Fluid and Solid Mech., K.J. Bathe Ed., Elsevier, Cambridge, MA (2003).
Phillips, W.R.C. and Pullin, D.I., On a generalization of Kaden's problem. J. Fluid Mech. 104 (1981) 4553.
D.I. Pullin, On similarity flows containing two branched vortex sheets, in Mathematical Aspects of Vortex Dynamics, R. Caflisch Ed., SIAM (1989) 97–106.
Scheffer, V., An inviscid flow with compact support in space-time. J. Geom. Anal. 3 (1993) 343401. CrossRef
Schochet, S., The weak vorticity formulation of the 2D Euler equations and concentration-cancellation. Comm. P.D.E. 20 (1995) 10771104. CrossRef
S. Schochet, Point-vortex method for periodic weak solutions of the 2-D Euler equations. Comm. Pure Appl. Math. XLIX (1996) 911–965.
A. Shnirelman, On the non-uniqueness of weak solutions of the Euler equations. Comm. Pure Appl. Math. L (1997) 1261–1286.
Sulem, P.L., Sulem, C., Bardos, C. and Frisch, U., Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability. Comm. Math. Phys. 80 (1981) 485516. CrossRef
Tryggvason, G., Dahn, W. and Sbeih, K., Fine structure of rollup by viscous and inviscid simulation. J. Fluids Eng.-T ASME 113 (1991) 3136. CrossRef
Vecchi, I. and On, S.J. Wu L1-vorticity for 2-D incompressible flow. Manuscripta Math. 78 (1993) 403412. CrossRef
Vishik, M., Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. S. Ser. 4 32 (1999) 769812. CrossRef
S.J. Wu, Recent progress in mathematical analysis of vortex sheets, in Proceedings of the ICM, Beijing (2002) Vol. III, 233–242.
V. Yudovich, Non-stationary flow of an ideal incompressible liquid (in Russian), Zh. Vych. Mat. 3 (1963) 1032–1066.
Yudovich, V., Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal, incompressible fluid. Math. Res. Lett. 2 (1995) 2738. CrossRef