Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T20:54:25.731Z Has data issue: false hasContentIssue false

The mixed regularity of electronic wave functions multiplied by explicit correlation factors* **

Published online by Cambridge University Press:  23 February 2011

Harry Yserentant*
Affiliation:
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany. [email protected]
Get access

Abstract

The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions,depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000,Springer (2010)], the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of two electrons. The present paper complements this work. It is shown that one can reach almost the same complexity as in the one-electron case adding a simple regularizing factor that depends explicitly on the interelectronic distances.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. Cancès, C. Le Bris and Y. Maday, Méthodes Mathématiques en Chimie Quantique. Springer (2006).
Flad, H.-J., Hackbusch, W. and Schneider, R., Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. ESAIM: M2AN 40 (2006) 4961. CrossRef
Flad, H.-J., Hackbusch, W. and Schneider, R., Best N-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM: M2AN 41 (2007) 261279. CrossRef
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. and Østergard Sørensen, T., Sharp regularity estimates for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183227. CrossRef
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. and Østergard Sørensen, T., Analytic structure of many-body Coulombic wave functions. Commun. Math. Phys. 289 (2009) 291310. CrossRef
T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic Structure Theory. John Wiley & Sons (2000).
Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. and Østergard Sørensen, T., Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77100. CrossRef
Hylleraas, E.A., Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54 (1929) 347366.
Kohn, W., Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71 (1999) 12531266. CrossRef
Kutzelnigg, W., r 12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor. Chim. Acta 68 (1985) 445469. CrossRef
Kutzelnigg, W. and Klopper, W., Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory. J. Chem. Phys. 94 (1991) 19852001. CrossRef
C. Le Bris Ed., Handbook of Numerical Analysis, Computational Chemistry X. North Holland (2003).
Le Bris, C., Computational chemistry from the perspective of numerical analysis. Acta Numer. 14 (2005) 363444. CrossRef
O'Connor, A.J., Exponential decay of bound state wave functions. Commun. Math. Phys. 32 (1973) 319340. CrossRef
Pople, J., Nobel lecture: Quantum chemical models. Rev. Mod. Phys. 71 (1999) 12671274. CrossRef
J. Rychlewski Ed., Explicitly Correlated Wave Functions in Chemistry and Physics, Progress in Theoretical Chemistry and Physics 13. Kluwer (2003).
Yserentant, H., On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731759. CrossRef
Yserentant, H., The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105 (2007) 659690. CrossRef
H. Yserentant, Regularity and Approximability of Electronic Wave Functions, Lecture Notes in Mathematics 2000. Springer (2010).