Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:38:47.307Z Has data issue: false hasContentIssue false

A mimetic discretization method for linear elasticity

Published online by Cambridge University Press:  27 January 2010

Lourenco Beirão Da Veiga*
Affiliation:
Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy. [email protected]
Get access

Abstract

A Mimetic Discretization method for the linear elasticity problemin mixed weakly symmetric form is developed. The scheme is shown toconverge linearly in the mesh size, independently of theincompressibility parameter λ, provided the discrete scalarproduct satisfies two given conditions. Finally, a family ofalgebraic scalar products which respect the above conditions isdetailed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965).
Amara, M. and Thomas, J.M., Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367383. CrossRef
Arnold, D.N., Brezzi, F. and Douglas Jr, J.., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347367. CrossRef
D.N. Arnold, R.S. Falk and R. Winther, Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer-Verlag (2005) 47–67.
Arnold, D.N., Falk, R.S. and Winther, R., Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 16991723. CrossRef
Beirão da, L. Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387406. CrossRef
Beirão da, L. Veiga and G. Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg. 76 (2008) 16961723. CrossRef
Beirão da, L. Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput. 31 (2008) 732760.
Beirão da, L. Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325356. CrossRef
Beirão da, L. Veiga, V. Gyrya, K. Lipnikov and G. Manzini, A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 72157232. CrossRef
Berndt, M., Lipnikov, K., Moulton, J.D. and Shashkov, M., Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math. 9 (2001) 253284. CrossRef
Berndt, M., Lipnikov, K., Shashkov, M., Wheeler, M.F. and Yotov, I., Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43 (2005) 17281749. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991).
Brezzi, F., Douglas Jr, J.. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217235. CrossRef
Brezzi, F., Boffi, D. and Fortin, M., Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8 (2009) 95121.
Brezzi, F., Lipnikov, K. and Shashkov, M., Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 18721896. CrossRef
Brezzi, F., Lipnikov, K. and Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 15331553. CrossRef
Brezzi, F., Lipnikov, K. and Simoncini, V., Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275298. CrossRef
Brezzi, F., Lipnikov, K., Shashkov, M. and Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg. 196 (2007) 36823692. CrossRef
Cangiani, A. and Manzini, G., Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg. 197 (2008) 933945. CrossRef
P.G. Ciarlet, Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. Amsterdam, North Holland (1988).
B.X. Fraejis de Vebeuke, Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975).
Gryrya, V. and Lipnikov, K., High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 88418854. CrossRef
Hyman, J., Shashkov, M. and Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys. 132 (1997) 130148. CrossRef
Hyman, J., Morel, J., Shashkov, M. and Steinberg, S., Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6 (2002) 333352. CrossRef
Kuznetsov, Y., Lipnikov, K. and Shashkov, M., The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2005) 301324. CrossRef
Lipnikov, K., Morel, J. and Shashkov, M., Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199 (2004) 589597. CrossRef
Lipnikov, K., Shashkov, M. and Svyatskiy, D., The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211 (2006) 473491. CrossRef
Morel, J., Hall, M. and Shaskov, M., A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys. 170 (2001) 338372. CrossRef