Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T06:19:03.104Z Has data issue: false hasContentIssue false

Low Mach number limit for viscous compressible flows

Published online by Cambridge University Press:  15 June 2005

Raphaël Danchin*
Affiliation:
Laboratoire de Mathématiques et Applications, Université Paris 12, 61 avenue du Général de Gaulle, 94010 Créteil Cedex 10, France. [email protected]
Get access

Abstract

In this survey paper, we are concerned with the zero Mach number limitfor compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropicfluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless statethe convergence to the incompressible Navier-Stokes equations when the Mach number ϵ goes to 0. Besides, it is shown that the global existence for the limit equations entails the global existence for the compressible model with small ϵ. The reader is referred to [R. Danchin, Ann. Sci. Éc. Norm. Sup. (2002)] for the detailed proof in the whole space case, and to [R. Danchin, Am. J. Math.124 (2002) 1153–1219] for the case of periodic boundary conditions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T. Alazard, Work in progress (2004).
M. Cannone, Ondelettes, paraproduits et Navier-Stokes. Diderot Ed., Paris (1995).
Danchin, R., Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141 (2000) 579614. CrossRef
Danchin, R., Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rational Mech. Anal. 160 (2001) 139. CrossRef
Danchin, R., Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations 26 (2001) 11831233. CrossRef
Danchin, R., Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124 (2002) 11531219. CrossRef
R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. Éc. Norm. Sup. (2002).
R. Danchin, On the uniqueness in critical spaces for compressible navier-stokes equations. Nonlinear Differential Equations and Applications, to appear (2002).
B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. Proc. Roy. Soc. London Ser. A, Math. Phys. Eng. Sci. 455 (1999) 2271–2279.
B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. (2002).
Fujita, H. and Kato, T., On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16 (1964) 269315. CrossRef
Gallagher, I., A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations. J. Math. Kyoto Univ. 40 (2000) 525540. CrossRef
Ginibre, J. and Velo, G., Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995) 5068. CrossRef
Hagstrom, T. and Lorenz, J., All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652672. CrossRef
Hoff, D., The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543554. CrossRef
Kato, T., Strong Lp -solutions of the Navier-Stokes equation in Rm , with applications to weak solutions. Math. Z. 187 (1984) 471480. CrossRef
Keel, M. and Tao, T., Endpoint Strichartz estimates. Am. J. Math. 120 (1998) 955980. CrossRef
Klainerman, S. and Majda, A., Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629651. CrossRef
Kreiss, H.-O., Lorenz, J. and Naughton, M.J., Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations. Adv. Appl. Math. 12 (1991) 187214. CrossRef
P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1: Incompressible models. Oxford Clarendon Press (1996).
P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models. Oxford Clarendon Press (1998).
Lions, P.-L. and Masmoudi, N., Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (9) 77 (1998) 585627. CrossRef
P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris (1999).
N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire (2001).
Matsumura, A. and Nishida, T., The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20 (1980) 67104.
Métivier, G. and Schochet, S., The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 6190. CrossRef
Métivier, G. and Schochet, S., Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106183.
Schochet, S., Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476512. CrossRef
Ukai, S., The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986) 323331. CrossRef