Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T20:43:30.711Z Has data issue: false hasContentIssue false

Locking free matching of different three dimensional models in structural mechanics

Published online by Cambridge University Press:  26 April 2007

Patrick Le Tallec
Affiliation:
École polytechnique, 91128 Palaiseau Cedex, France. [email protected]
Saloua Mani Aouadi
Affiliation:
Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisie.
Get access

Abstract

The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside flexible membranes. The model involves as in Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595] a bending dominated shell envelope and a quasi incompressible elastic body. The present work extends an earlier work ofArnold and Brezzi [Math Comp.66 (1997) 1–14] treating the shell part and proposes a global stable finite element approximation by coupling optimal mixed finite element formulations of the different subproblems by mortar techniques. Examples of adequate finite elements are proposed. Convergence results are derived in two steps. First a global inf-sup condition is proved, deducedfrom the local conditions to be satisfied by the finite elements used for the external shell problem, the internal incompressible 3D problem, and the mortar coupling, respectively. Second, the analysis ofArnold and Brezzi [Math. Comp.66 (1997) 1–14] is extended to the present problem and least to convergence results for the full coupled problem, withconstants independent of the problem's small parameters.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, A. and Brezzi, F., Locking free finite element methods for shells. Math. Comp. 66 (1997) 114. CrossRef
K.J. Bathe and D. Chapelle, The Finite Element Analysis of Shells - fundamentals. Computational Fluid and Solid Mechanics, Springer Verlag, New York (2003).
Bathe, J., Chapelle, D. and Iosilevich, A., An inf-sup test for shell finite elements. Comput. Structures 75 (2000) 439456. CrossRef
Ben Belgacem, F. and Maday, Y., The mortar element method for three dimensional finite element. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289303.
Blouza, A. and Le Dret, H., Existence et unicité pour le modèle de Koiter pour une coque peu régulière. C.R. Acad. Sci. Paris 319 (1994) 11271132.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
Brezzi, F. and Marini, D., Error estimates for the three-field formulation with bubble stabilization. Math. Comp. 70 (2000) 911934. CrossRef
M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coque de Koiter. Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin (1976).
Chapelle, D. and Ferent, A., Modeling of the inclusion of a reinforcing sheet within a 3D medium. Math. Models Methods Appl. Sci. 13 (2003) 573595. CrossRef
Chapelle, D. and Stenberg, R., Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal. 36 (1999) 3273. CrossRef
Diaz, A. and Barthes-Biesel, D., Entrance of a bioartificial capsule in a pore. Comput. Modeling Engineering Sci. 3 (2002) 321338.
B. Flemisch, J.M. Melenk and B. Wohlmuth, Mortar methods with curved interfaces. Technical report, Max Planck Institute (2004).
P. Hauret, Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Ph.D. thesis, École polytechnique, France (2004).
Le Tallec, P. and Mani, S., Numerical analysis of a linearized fluid-structure interaction problem. Numer. Math. 87 (2000) 317354. CrossRef
Puso, M.A., A 3D mortar method for solid mechanic. Int. J. Num. Meth. Engr. 59 (2004) 315336. CrossRef
Scott, L.R. and Zhang, S., Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483493. CrossRef
Stenberg, R., A technique for analysing finite element methods for viscous incompressible flow. Int. J. Num. Meth. Fluids 11 (1990) 935948. CrossRef
B.I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition. Springer Verlag, New York (2001).
G. Yang, M.C. Delfour and M. Fortin, Error Analysis of mixed finite element for cylindrical shells, Centre de Recherche Mathématiques, Proceedings and Lecture Notes 21 (1999).