Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:17:22.283Z Has data issue: false hasContentIssue false

Least regret control, virtual control anddecomposition methods

Published online by Cambridge University Press:  15 April 2002

Jacques-Louis Lions*
Affiliation:
Collège de France, 3 rue d'Ulm, 75231 Paris Cedex 05, France.
Get access

Abstract

"Least regret control" consists in trying tofind a control which "optimizes the situation" with the constraint of not making things tooworse with respect to a known reference control,in presence of more or less significantperturbations. This notion was introduced in [7].It is recalled on a simple example (an ellipticsystem, with distributed control and boundary perturbation) in Section 2. We show that the problem reduces to a standard optimal control problem for augmented state equations.On another hand, we have introduced in recentnotes [9-12] the method ofvirtual control, aimed at the"decomposition of everything" (decomposition ofthe domain, of the operator, etc). Anintroduction to this method is presented, withouta priori knowledge needed, in Sections 3 and 4,directly on the augmented state equations.For problems without control, or with "standard" control, numerical applications of the virtualcontrol ideas have been given in the notes[9-12] and in the note[5].One of the first systematic paper devoted to allkind of decomposition methods, including multicriteria, is a jointpaper with A. Bensoussan and R. Temam, towhom this paper is dedicated, cf. [1].

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Bensoussan, J.L. Lions and R. Temam, Sur les méthodes de décomposition, de décentralisation et de coordination et applications, Méthodes Mathématiques de l'Informatique, J.L. Lions and G.I. Marchuk Eds, Dunod, Paris (1974) 133-257.
I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars (1974).
Gabay, D. and Lions, J.L., Décisions stratégiques à moindres regrets. C.R. Acad. Sci. Paris 319 (1994) 1049-1056.
R. Glowinski and J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. (1994) 269-378 and (1995) 159-333.
Glowinski, R., Lions, J.L. and O.Pironneau, Decomposition of energy spaces and applications. C.R. Acad. Sci. Paris 329 (1999) 445-452. CrossRef
J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles, Paris, Dunod, Gauthier-Villars (1968).
Lions, J.L., Contrôle à moindres regrets des systèmes distribués. C.R. Acad. Sci. Paris 315 (1992) 1253-1257.
J.L. Lions and E.Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris (1968) Vol. 1 and 2.
Lions, J.L. and Pironneau, O., Algorithmes parallèles pour la solution de problèmes aux limites. C.R. Acad. Sci. Paris 327 (1998) 947-952. CrossRef
Lions, J.L. and Pironneau, O., Domain decomposition methods for CAD. C.R. Acad. Sci. Paris 328 (1999) 73-80. CrossRef
J.L. Lions and O. Pironneau, Décomposition d'opérateurs, répliques et contrôle virtuel. C.R. Acad. Sci. Paris (to appear).
Lions, J.L. and Pironneau, O., Sur le contrôle parallèle de systèmes distribués. C.R. Acad. Sci. Paris 327 (1998) 993-998. CrossRef
L.J. Savage, The foundations of Statistics, 2nd edition, Dover (1972).