Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T22:53:13.407Z Has data issue: false hasContentIssue false

Homogenization of a monotone problemin a domain with oscillating boundary

Published online by Cambridge University Press:  15 August 2002

Dominique Blanchard
Affiliation:
Université de Rouen, UPRES-A 6085, 76821 Mont Saint Aignan Cedex, France.
Luciano Carbone
Affiliation:
Università degli Studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, via Mezzocannone n. 8, 80134 Napoli, Italy.
Antonio Gaudiello
Affiliation:
Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria Agraria e Agronomia del territorio, via Università n. 100, 80055 Portici (NA), Italy.
Get access

Abstract

We study the asymptotic behaviour of the following nonlinear problem: $$\{\begin{array}{ll}-{\rm div}(a( Du_h))+\vert u_h\vert^{p-2}u_h =f \quad\hbox{in }\Omega_h, a( Du_h)\cdot\nu = 0 \quad\hbox{on }\partial\Omega_h, \end{array}.$$

in a domain Ωh of $\mathbb{R}^n$ whose boundary ∂Ωh contains an oscillating part with respect to hwhen h tends to . The oscillating boundary is defined by a set of cylinders with axis 0xn that are h -1-periodically distributed. We prove that the limit problem in the domain corresponding tothe oscillating boundary identifieswith a diffusion operator with respect tox n coupled with an algebraic problemfor the limit fluxes.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)