Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T15:13:13.640Z Has data issue: false hasContentIssue false

Error of the two-step BDF for the incompressible Navier-Stokes problem

Published online by Cambridge University Press:  15 October 2004

Etienne Emmrich*
Affiliation:
Institut für Mathematik, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany. [email protected].
Get access

Abstract

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.A., Dougalis, V.A. and Karakashian, O.A., On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339375. CrossRef
E. Emmrich, Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems. Cuvillier, Göttingen (2001).
E. Emmrich, Error of the two-step BDF for the incompressible Navier-Stokes problem. Preprint 741, TU Berlin (2002).
V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979).
Heywood, J.G. and Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353384. CrossRef
Hill, A.T. and Süli, E., Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20 (2000) 633667. CrossRef
S. Müller-Urbaniak, Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg (1994).
A. Prohl, Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner, Stuttgart (1997).
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publ. Company, Amsterdam (1977).
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Reg. Confer. Ser. Appl. Math. SIAM 41 (1985).