Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T09:21:02.970Z Has data issue: false hasContentIssue false

Diffusion and propagation problems in some ramified domains with a fractal boundary

Published online by Cambridge University Press:  15 November 2006

Yves Achdou
Affiliation:
UFR Mathématiques, Université Paris 7, Case 7012, 75251 Paris Cedex 05, France and Laboratoire Jacques-Louis Lions, Université Paris 6, 75252 Paris Cedex 05, France. [email protected]
Christophe Sabot
Affiliation:
CNRS, UMPA, UMR 5669, 46, Allée d'Italie, 69364 Lyon Cedex 07, France. [email protected]
Nicoletta Tchou
Affiliation:
IRMAR, Université de Rennes 1, Rennes, France. [email protected]
Get access

Abstract

This paper is devoted to some elliptic boundary value problems in a self-similar ramified domain of ${\mathbb R}^2$ with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A generalized Neumann boundary condition is imposed on the fractal boundary.Sobolev spaces on this domain are studied. In particular, extension and trace results are obtained. These results enable the investigation of the variational formulation of the above mentioned boundary value problems. Next, for homogeneous Neumann conditions, the emphasis is placed on transparent boundary conditions, which allow the computationof the solutions in the subdomains obtained by stopping the geometric construction after a finite number of steps. The proposed methods and algorithmswill be used numerically in forecoming papers.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Y. Achdou, C. Sabot and N. Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary. SIAM Multiscale Model. Simul. (2006) (accepted for publication).
Y. Achdou, C. Sabot and N. Tchou, Transparent boundary conditions for Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2006) (in press).
R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). Pure Appl. Math. 65.
H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. Masson, Paris, 1983.
M. Felici, Physique du transport diffusif de l'oxygène dans le poumon humain. Ph.D. thesis, École Polytechnique (2003).
Gibbons, M., Raj, A. and Strichartz, R.S., The finite element method on the Sierpinski gasket. Constr. Approx. 17 (2001) 561588. CrossRef
P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA (1985).
Hutchinson, J.E., Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713747. CrossRef
Jones, P.W., Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 7188. CrossRef
A. Jonsson and H. Wallin, Function spaces on subsets of R n . Math. Rep. 2 (1984) xiv+221.
Keller, J.B. and Givoli, D., Exact nonreflecting boundary conditions. J. Comput. Phys. 82 (1989) 172192. CrossRef
Lancia, M.R., A transmission problem with a fractal interface. Z. Anal. Anwendungen 21 (2002) 113133. CrossRef
Lancia, M.R., Second order transmission problems across a fractal surface. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 191213.
B.B. Mandelbrodt, The fractal geometry of nature. Freeman and Co (1982).
B. Mauroy, M. Filoche, J.S. Andrade and B. Sapoval, Interplay between flow distribution and geometry in an airway tree. Phys. Rev. Lett. 90 (2003).
Mauroy, B., Filoche, M., Weibel, E.R. and Sapoval, B., The optimal bronchial tree is dangerous. Nature 427 (2004) 633636. CrossRef
V.G. Maz'ja, Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T.O. Shaposhnikova.
Mosco, U., Energy functionals on certain fractal structures. J. Convex Anal. 9 (2002) 581600.
Mosco, U. and Vivaldi, M.A., Variational problems with fractal layers. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 237251.
Oberlin, R., Street, B. and Strichartz, R.S., Sampling on the Sierpinski gasket. Experiment. Math. 12 (2003) 403418. CrossRef
J. Rauch, Partial differential equations. Graduate Texts in Mathematics 128, Springer-Verlag, New York (1991).
C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92 (2003) vi+104.
C. Sabot, Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices, in Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 72 (2004) 155–205.
B. Sapoval and T. Gobron, Vibration of strongly irregular fractal resonators. Phys. Rev. E 47 (1993).
B. Sapoval, T. Gobron and A. Margolina, Vibration of fractal drums. Phys. Rev. Lett. 67 (1991).