Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T16:31:49.867Z Has data issue: false hasContentIssue false

Characterization of collision kernels

Published online by Cambridge University Press:  15 November 2003

Laurent Desvillettes
Affiliation:
École Normale Supérieure de Cachan, Centre de Mathématiques et leurs Applications, 61 Avenue du Président Wilson, 94235 Cachan, France. [email protected].
Francesco Salvarani
Affiliation:
Università degli Studi di Pavia, Dipartimento di Matematica, Via Ferrata, 1, 27100 , Italy. [email protected].
Get access

Abstract

In this paper we show how abstract physical requirements are enoughto characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, R., Desvillettes, L., Villani, C. and Wennberg, B., Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327-355. CrossRef
R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire.
Bobylev, A.V., The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443-476. CrossRef
C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994).
Desvillettes, L., Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1-22.
Desvillettes, L. and Ricci, V., A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173-1189. CrossRef
Desvillettes, L. and Villani, C., On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179-259. CrossRef
Dürr, D., Goldstein, S. and Lebowitz, J., Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209-230. CrossRef
G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).
I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967).
L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983).
Illner, R. and Pulvirenti, M., Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189-203. CrossRef
Illner, R. and Pulvirenti, M., Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143-146. CrossRef
O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111. CrossRef
Preisendorfer, R.W., A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685-730.