Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T14:09:15.010Z Has data issue: false hasContentIssue false

Certified reduced-basis solutions of viscous Burgers equationparametrized by initial and boundary values

Published online by Cambridge University Press:  11 January 2013

Alexandre Janon
Affiliation:
Joseph Fourier University, LJK/MOISE, BP 53, 38041 Grenoble Cedex, France.. [email protected]; [email protected]; [email protected] .
Maëlle Nodet
Affiliation:
Joseph Fourier University, LJK/MOISE, BP 53, 38041 Grenoble Cedex, France.. [email protected]; [email protected]; [email protected] .
Clémentine Prieur
Affiliation:
Joseph Fourier University, LJK/MOISE, BP 53, 38041 Grenoble Cedex, France.. [email protected]; [email protected]; [email protected] .
Get access

Abstract

We present a reduced basis offline/online procedure for viscous Burgers initial boundaryvalue problem, enabling efficient approximate computation of the solutions of thisequation for parametrized viscosity and initial and boundary value data. This procedurecomes with a fast-evaluated rigorous error bound certifying the approximation procedure.Our numerical experiments show significant computational savings, as well as efficiency ofthe error bound.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

ARPACK : Arnoldi Package, available on http://www.caam.rice.edu/software/ARPACK/.
Babuska, I., The finite element method with penalty. Math. Comput. 27 (1973) 221228. Google Scholar
Barrett, J.W. and Elliott, C.M., Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343366. Google Scholar
A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM : M2AN (2009).
Chatterjee, A., An introduction to the proper orthogonal decomposition. Current Sci. 78 (2000) 808817. Google Scholar
V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. 5 (1986).
GLPK : GNU Linear Programming Kit, available on http://www.gnu.org/software/glpk/.
GOMP : An OpenMP implementation for GCC, available on http://gcc.gnu.org/projects/gomp/.
M.A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology (2005).
Grepl, M.A. and Patera, A.T., A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157181. Google Scholar
Grepl, M.A., Maday, Y., Nguyen, N.C. and Patera, A.T., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575605. Google Scholar
Haasdonk, B. and Ohlberger, M., Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM : M2AN 42 (2008) 277302. Google Scholar
Helton, J.C., Johnson, J.D., Sallaberry, C.J. and Storlie, C.B., Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety 91 (2006) 11751209. Google Scholar
E. Hopf, The partial differential equation u t + u u x = μ xx. Commun. Pure Appl. Math. 3 (1950) 201–230.
Huynh, D.B.P., Rozza, G., Sen, S. and Patera, A.T., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473478. Google Scholar
Jung, N., Haasdonk, B. and Kroner, D., Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math. 2 (2009) 334353. Google Scholar
Knezevic, D.J. and Patera, A.T., A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids : FENE dumbbells in extensional flow. SIAM J. Sci. Comput. 32 (2010) 793817. Google Scholar
N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Mod. (2005) 1523–1558.
Nguyen, N.C., Rozza, G. and Patera, A.T., Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’s equation. Calcolo 46 (2009) 157185. Google Scholar
J. Nocedal and S.J. Wright, Numerical optimization. Springer-Verlag (1999).
A.M. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer (2008).
Rovas, D.V., Machiels, L. and Maday, Y., Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423. Google Scholar
A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley, New York (2000).
J.C. Strikwerda, Finite difference schemes and partial differential equations. Society for Industrial Mathematics (2004).
Veroy, K. and Patera, A.T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773788. Google Scholar
Veroy, K., Prud’homme, C. and Patera, A.T., Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math. 337 (2003) 619624. Google Scholar