Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T19:55:33.508Z Has data issue: false hasContentIssue false

Central-Upwind Schemes for the Saint-Venant System

Published online by Cambridge University Press:  15 August 2002

Alexander Kurganov
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109 and Mathematics Department, Tulane University, New Orleans, LA 70118, USA. [email protected].
Doron Levy
Affiliation:
Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA. [email protected].
Get access

Abstract

We present one- and two-dimensional central-upwind schemesfor approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutionsin which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preservethis delicate balance with numerical schemes.Small perturbations of these states are also very difficultto compute. Our approach is based on extending semi-discrete central schemes forsystems of hyperbolic conservation laws to balance laws.Special attention is paid to the discretization of the sourceterm such as to preserve stationary steady-statesolutions. We also prove that the second-order version of our schemes preserves the nonnegativity of the height of the water.This important feature allows one to compute solutions for problemsthat include dry areas.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulle, A., Fourth Order Chebyshev Methods with Recurrence Relation. SIAM J. Sci. Comput. 23 (2002) 2041-2054. CrossRef
Abdulle, A. and Medovikov, A., Second Order Chebyshev Methods Based on Orthogonal Polynomials. Numer. Math. 90 (2001) 1-18. CrossRef
P. Arminjon and M.-C. Viallon, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C. R. Acad. Sci. Paris Sér. I Math. t. 320 (1995) 85-88.
Arminjon, P., Viallon, M.-C. and Madrane, A., Finite Volume Extension, A of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. CrossRef
E. Audusse, M.O. Bristeau and B. Perthame, Kinetic Schemes for Saint-Venant Equations With Source Terms on Unstructured Grids. INRIA Report RR-3989 (2000).
Bermudez, A. and Vasquez, M.E., Upwind Methods for Hyperbolic Conservation Laws With Source Terms. Comput. & Fluids 23 (1994) 1049-1071. CrossRef
Bianco, F., Puppo, G. and Russo, G., High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput. 21 (1999) 294-322. CrossRef
Buffard, T., Gallouët, T. and Hérard, J.-M., Sequel, A to a Rough Godunov Scheme. Application to Real Gas Flows. Comput. & Fluids 29-7 (2000) 813-847. CrossRef
Gottlieb, S., Shu, C.-W. and Tadmor, E., High Order Time Discretization Methods with the Strong Stability Property. SIAM Rev. 43 (2001) 89-112. CrossRef
Friedrichs, K.O. and Lax, P.D., Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686-1688. CrossRef
T. Gallouët, J.-M. Hérard and N. Seguin, Some Approximate Godunov Schemes to Compute Shallow-Water Equations with Topography. Computers and Fluids (to appear).
J.F. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102.
Gosse, L., Well-Balanced Scheme Using Non-Conservative Products De, Asigned for Hyperbolic Systems of Conservation Laws With Source Terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. CrossRef
Harten, A., Engquist, B., Osher, S. and Chakravarthy, S.R., Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput. Phys. 71 (1987) 231-303. CrossRef
Jiang, G.-S. and Tadmor, E., Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. CrossRef
Jin, S., Steady-state Capturing Method, A for Hyperbolic System with Geometrical Source Terms. ESAIM: M2AN 35 (2001) 631-645. CrossRef
Kurganov, A. and Levy, D., Third-Order Semi-Discrete Scheme, A for Conservation Laws and Convection-Diffusion Equations. SIAM J. Sci. Comput. 22 (2000) 1461-1488. CrossRef
Kurganov, A., Noelle, S. and Petrova, G., Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. 23 (2001) 707-740. CrossRef
Kurganov, A. and Petrova, G., Third-Order Semi-Discrete Genuinely Multidimensional Central Scheme, A for Hyperbolic Conservation Laws and Related Problems. Numer. Math. 88 (2001) 683-729. CrossRef
Kurganov, A. and Petrova, G., Central Schemes and Contact Discontinuities. ESAIM: M2AN 34 (2000) 1259-1275. CrossRef
Kurganov, A. and Tadmor, E., New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214-282.
van Leer, B., Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. J. Comput. Phys. 32 (1979) 101-136. CrossRef
LeVeque, R.J., Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comput. Phys. 146 (1998) 346-365. CrossRef
R.J. LeVeque and D.S. Bale, Wave Propagation Methods for Conservation Laws with Source Terms, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 609-618.
Levy, D., Puppo, G. and Russo, G., Central WENO Schemes for Hyperbolic Systems of Conservation Laws. ESAIM: M2AN 33 (1999) 547-571. CrossRef
Levy, D., Puppo, G. and Russo, G., Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM J. Sci. Comput. 22 (2000) 656-672. CrossRef
S.F. Liotta, V. Romano and G. Russo, Central Schemes for Systems of Balance Laws, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 651-660.
Liu, X.-D. and Osher, S., Nonoscillatory High Order Accurate Self Similar Maximum Principle Satisfying Shock Capturing Schemes. I. SIAM J. Numer. Anal. 33 (1996) 760-779. CrossRef
Liu, X.-D., Osher, S. and Chan, T., Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 115 (1994) 200-212. CrossRef
Liu, X.-D. and Tadmor, E., Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math. 79 (1998) 397-425. CrossRef
Medovikov, A., High Order Explicit Methods for Parabolic Equations. BIT 38 (1998) 372-390. CrossRef
Nessyahu, H. and Tadmor, E., Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comput. Phys. 87 (1990) 408-463. CrossRef
S. Noelle, A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-Dimensional Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 129 (1999) 757-766.
Perthame, B. and Simeoni, C., A Kinetic Scheme for the Saint-Venant System with a Source Term. École Normale Supérieure, Report DMA-01-13. Calcolo 38 (2001) 201-301. CrossRef
G. Russo, Central Schemes for Balance Laws, Proceedings of HYP2000. Magdeburg (to appear).
de Saint-Venant, A.J.C., Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154.
Shu, C.-W., Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Comput. 6 (1988) 1073-1084. CrossRef
Shu, C.-W. and Osher, S., Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys. 77 (1988) 439-471. CrossRef
Sweby, P.K., High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. CrossRef
Tadmor, E., Convenient Total Variation Diminishing Conditions for Nonlinear Difference Schemes. SIAM J. Numer. Anal. 25 (1988) 1002-1014. CrossRef