Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Talischi, Cameron
Pereira, Anderson
Menezes, Ivan F. M.
and
Paulino, Glaucio H.
2015.
Gradient correction for polygonal and polyhedral finite elements.
International Journal for Numerical Methods in Engineering,
Vol. 102,
Issue. 3-4,
p.
728.
Rodrigo, C.
Gaspar, F.J.
Hu, X.
and
Zikatanov, L.
2015.
A finite element framework for some mimetic finite difference discretizations.
Computers & Mathematics with Applications,
Vol. 70,
Issue. 11,
p.
2661.
Vacca, Giuseppe
and
Beirão da Veiga, Lourenco
2015.
Virtual element methods for parabolic problems on polygonal meshes.
Numerical Methods for Partial Differential Equations,
Vol. 31,
Issue. 6,
p.
2110.
Berrone, Stefano
Benedetto, Matìas Fernando
Borio, Andrea
Pieraccini, Sandra
and
Scialò, Stefano
2015.
The Virtual Element Method for large scale Discrete Fracture Network simulations: fracture‐independent mesh generation.
PAMM,
Vol. 15,
Issue. 1,
p.
19.
Lipnikov, Konstantin
and
Manzini, Gianmarco
2016.
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations.
Vol. 114,
Issue. ,
p.
311.
Perugia, Ilaria
Pietra, Paola
and
Russo, Alessandro
2016.
A plane wave virtual element method for the Helmholtz problem.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 50,
Issue. 3,
p.
783.
Lipnikov, Konstantin
Manzini, Gianmarco
Moulton, J. David
and
Shashkov, Mikhail
2016.
The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient.
Journal of Computational Physics,
Vol. 305,
Issue. ,
p.
111.
da Veiga, Lourenco Beirão
Brezzi, Franco
Marini, Luisa Donatella
and
Russo, Alessandro
2016.
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations.
Vol. 114,
Issue. ,
p.
39.
Antonietti, P. F.
da Veiga, L. Beira͂o
Scacchi, S.
and
Verani, M.
2016.
A $C^1$ Virtual Element Method for the Cahn--Hilliard Equation with Polygonal Meshes.
SIAM Journal on Numerical Analysis,
Vol. 54,
Issue. 1,
p.
34.
Benedetto, Matías Fernando
Berrone, Stefano
and
Borio, Andrea
2016.
Advances in Discretization Methods.
Vol. 12,
Issue. ,
p.
167.
Zhao, Jikun
Chen, Shaochun
and
Zhang, Bei
2016.
The nonconforming virtual element method for plate bending problems.
Mathematical Models and Methods in Applied Sciences,
Vol. 26,
Issue. 09,
p.
1671.
Chen, Wenbin
Wang, Fang
and
Wang, Yanqiu
2016.
Weak Galerkin method for the coupled Darcy–Stokes flow.
IMA Journal of Numerical Analysis,
Vol. 36,
Issue. 2,
p.
897.
Beir ao da Veiga, L.
Chernov, A.
Mascotto, L.
and
Russo, A.
2016.
Basic principles of hp virtual elements on quasiuniform meshes.
Mathematical Models and Methods in Applied Sciences,
Vol. 26,
Issue. 08,
p.
1567.
Chi, Heng
Talischi, Cameron
Lopez-Pamies, Oscar
and
Paulino, Glaucio H.
2016.
A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme.
Computer Methods in Applied Mechanics and Engineering,
Vol. 306,
Issue. ,
p.
216.
Cockburn, Bernardo
Fu, Guosheng
and
Qiu, Weifeng
2016.
A note on the devising of superconvergent HDG methods for Stokes flow byM-decompositions.
IMA Journal of Numerical Analysis,
p.
drw029.
Beirão da Veiga, Lourenço
Brezzi, Franco
Marini, Luisa Donatella
and
Russo, Alessandro
2016.
Mixed virtual element methods for general second order elliptic problems on polygonal meshes.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 50,
Issue. 3,
p.
727.
Ayuso de Dios, Blanca
Lipnikov, Konstantin
and
Manzini, Gianmarco
2016.
The nonconforming virtual element method.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 50,
Issue. 3,
p.
879.
da Veiga, L. Beirão
Brezzi, F.
Marini, L. D.
and
Russo, A.
2016.
$$H({\text {div}})$$ H ( div ) and $$H(\mathbf{curl})$$ H ( curl ) -conforming virtual element methods.
Numerische Mathematik,
Vol. 133,
Issue. 2,
p.
303.
Palha, A.
and
Gerritsma, M.
2017.
A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier–Stokes equations.
Journal of Computational Physics,
Vol. 328,
Issue. ,
p.
200.
Artioli, E.
Beirão da Veiga, L.
Lovadina, C.
and
Sacco, E.
2017.
Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem.
Computational Mechanics,
Vol. 60,
Issue. 4,
p.
643.