Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:06:58.306Z Has data issue: false hasContentIssue false

Adaptive mesh refinement strategy for a non conservativetransport problem

Published online by Cambridge University Press:  13 August 2014

Benjamin Aymard
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France. CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France.. [email protected] INRIA Paris-Rocquencourt, EPI Mycenae, Domaine de Voluceau, BP105, 78153 Le Chesnay cedex, France.
Frédérique Clément
Affiliation:
INRIA Paris-Rocquencourt, EPI Mycenae, Domaine de Voluceau, BP105, 78153 Le Chesnay cedex, France.
Marie Postel
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France. CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France.. [email protected] INRIA Paris-Rocquencourt, EPI Mycenae, Domaine de Voluceau, BP105, 78153 Le Chesnay cedex, France.
Get access

Abstract

Long time simulations of transport equations raise computational challenges since theyrequire both a large domain of calculation and sufficient accuracy. It is thereforeadvantageous, in terms of computational costs, to use a time varying adaptive mesh, withsmall cells in the region of interest and coarser cells where the solution is smooth.Biological models involving cell dynamics fall for instance within this framework and areoften non conservative to account for cell division. In that case the thresholdcontrolling the spatial adaptivity may have to be time-dependent in order to keep up withthe progression of the solution. In this article we tackle the difficulties arising whenapplying a Multiresolution method to a transport equation with discontinuous fluxesmodeling localized mitosis. The analysis of the numerical method is performed on asimplified model and numerical scheme. An original threshold strategy is proposed andvalidated thanks to extensive numerical tests. It is then applied to a biological model inboth cases of distributed and localized mitosis.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aymard, B., Clément, F., Coquel, F. and Postel, M., Numerical simulation of the selection process of the ovarian follicles. ESAIM: Proc. 38 (2012) 99117. Google Scholar
Aymard, B., Clément, F., Coquel, F. and Postel, M., A numerical method for transport equations with discontinuous flux functions: Application to mathematical modeling of cell dynamics. SIAM J. Sci. Comput. 35 (2013) 24422468. Google Scholar
Bürger, R., Ruiz, R., Schneider, K. and Sepúlveda, M.A., Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux. J. Engrg. Math. 60 (2008) 365385. Google Scholar
Clément, F. and Monniaux, D., Multiscale modelling of ovarian follicular selection. Prog. Biophys. Mol. Biol. 113 (2013) 398408. Google ScholarPubMed
Cohen, A., Kaber, S.M., Müller, S. and Postel, M., Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72 (2003) 183225. Google Scholar
Cohen, A., Kaber, S.M. and Postel, M., Adaptive multiresolution for finite volume solutions of gas dynamics. Comput. Fluids 32 (2003) 3138. Google Scholar
Multiresolution and Adaptive Methods for Convection-Dominated Problems, edited by F. Coquel, Y. Maday, S. Müller, M. Postel and Q. Tran, vol. 29. ESAIM: Proc. (2009) 1–108.
Coquel, F., Nguyen, Q., Postel, M. and Tran, Q., Local time stepping applied to implicit-explicit methods for hyperbolic systems. Multiscale Model. Simul. 8 (2010) 540570. Google Scholar
Coquel, F., Postel, M. and Tran, Q., Convergence of time–space adaptive algorithms for nonlinear conservation laws. IMA J. Numer. Anal. 32 (2012) 14401483. Google Scholar
Echenim, N., Clément, F. and Sorine, M., Multiscale modeling of follicular ovulation as a reachability problem. Multiscale Model. Simul. 6 (2007) 895912. Google Scholar
Echenim, N., Monniaux, D., Sorine, M. and Clément, F., Multi-scale modeling of the follicle selection process in the ovary. Math. Biosci. 198 (2005) 5779. Google ScholarPubMed
Harten, A., Multiresolution algorithms for the numerical solutions of hyperbolic conservation laws. Commun. Pure Appl. Math. 48 (1995) 13051342. Google Scholar
Summer school on multiresolution and adaptive mesh refinement methods, edited by V. Louvet and M. Massot, vol. 34. ESAIM: Proc. (2011) 1–290.
Michel, P., Multiscale modeling of follicular ovulation as a mass and maturity dynamical system. Multiscale Model. Simul. 9 (2011) 282313. Google Scholar
S. Müller, Adaptive multiscale schemes for conservation laws, vol. 27 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2003).
B. Perthame,Transport Equations In Biology. Front. Math. Birkhauser Verlag, Basel (2007).
Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H. and Miyawaki, A., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132 (2008) 487498. Google ScholarPubMed
Shang, P., Cauchy problem for multiscale conservation laws: Applications to structured cell populations. J. Math. Anal. Appl. 401 (2013) 896920. Google Scholar
Tomura, M., Sakaue-Sawano, A., Mori, Y., Takase-Utsugi, M., Hata, A., Ohtawa, K., Kanagawa, O. and Miyawaki, A., Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS ONE 8 (2013) e73801. Google ScholarPubMed