Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T08:31:30.105Z Has data issue: false hasContentIssue false

Un algorithme d'identification de frontièressoumises à des conditions aux limites de Signorini

Published online by Cambridge University Press:  15 April 2002

Slim Chaabane
Affiliation:
Faculté des Sciences de Sfax & ENIT-L A1. ([email protected])
Mohamed Jaoua
Affiliation:
ENIT-L A1, BP 37 1002 Tunis-Belvédère, Tunisie. ([email protected])
Get access

Abstract

This work deals with a non linear inverse problem of reconstructingan unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type,by using boundary measurements. The problem is turned into an optimal shape design one, by constructinga Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary.Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u 0, and not on its Lagrangian derivative u1(θ).

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieux, S., Ben Abda, A. et Jaoua, M., Identifiabilité de frontiètres inaccessibles par une mesure unique de surface. Annales Maghrébines de l'Ingénieur , 7 (1993) 5-24.
Ben Abda, A., Chaabane, S., El Dabaghi, F. et Jaoua, M., On a non linear geometrical inverse problem of Signorini type: identifiability and stability. Math. Meth. in the Appl. Sci. 21 (1998) 1379-1398.
F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. Sinum (à paraître).
Brezzi, F., Hager, W.W. et Raviart Error, P.A. estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431-443. CrossRef
Chaabane, S. et Jaoua, M., Identification of Robin coefficients by the means of boundary measurements. Inverse Problems 15 (1999) 1425-1438. CrossRef
F. Hettlich et W. Rundell Iterative methods for the reconstraction of an inverse potential problem. Inverse Problems 12 (1996) 251-266.
Khodja, K. et Moussaoui, M., Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Diff. Eq. 17 (1992) 805-826.
R.V. Kohn et A. McKenney Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6 (1990) 389-414.
R.V. Kohn et M. Vogelius, Determinig conductivity by boundary measurements; interior results. Comm. Pure Appl. Math. 38 (1985) 644-667.
Kohn, R.V. et Vogelius, M., Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40 (1987) 745-777. CrossRef
Kunisch, K. et Pan, X., Estimation of interfaces from boundary measurements. SIAM J. Cont. Opt. 32 (1994) 867-894. CrossRef
J.L.M. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969).
J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, tome 1. Dunod, Paris (1968).
Roche, J.R. et Sokolowski, J., Numerical methods for shape identification problems. Control and Cybernetics 25 (1996) 867-894.
Simon, J., Differentiation with respect to the domaine in boundary value problems. Num. Func. Anal. Opt. 2 (1980) 649-687. CrossRef
J. Sokolowski et J.P. Zolesio, Introduction to shape optimization; shape sensitivity analysis. Springer Verlag (1992).