Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T15:53:22.615Z Has data issue: false hasContentIssue false

Theoretical aspects and numerical computationof the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition

Published online by Cambridge University Press:  23 February 2010

Mario Durán
Affiliation:
Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]
Eduardo Godoy
Affiliation:
Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]
Jean-Claude Nédélec
Affiliation:
CMAP, École polytechnique, 91128 Palaiseau, France. [email protected]
Get access

Abstract

This work presents an effective and accurate method for determining, from a theoretical and computational point of view, the time-harmonic Green's function of an isotropic elastic half-plane where an impedance boundary condition is considered. This method, based on the previous work done by Durán et al. (cf. [Numer. Math.107 (2007) 295–314; IMA J. Appl. Math.71 (2006) 853–876]) for the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques, which has an important advantage because the obtention of explicit expressions for the surface waves. We show, in addition to the usual Rayleigh wave, another surface wave appearing in some special cases. Numerical results are given to illustrate that. This is an extended and detailed version of the previous article by Durán et al. [C. R. Acad. Sci. Paris, Ser. IIB334 (2006) 725–731].

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

H. Bateman, Tables of Integral Transformations, Volume I. McGraw-Hill Book Company, Inc. (1954).
W.W. Bell, Special Functions for Scientists and Engineers. Dover Publications, Inc., New York, USA (1968).
M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. John Wiley & Sons Ltd., Chichester, UK (1995).
Chen, Z. and Dravinski, M., Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources – Part I: A 2D model. Int. J. Numer. Meth. Engrg. 69 (2007) 347366. CrossRef
Chen, Z. and Dravinski, M., Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources – Part II: A 3D model. Int. J. Numer. Meth. Engrg. 69 (2007) 367389. CrossRef
P. Colton and R. Kress, Integral Equations Methods in Scattering Theory. John Wiley, New York, USA (1983).
J. Dompierre, Équations Intégrales en Axisymétrie Généralisée, Application à la Sismique Entre Puits. Ph.D. Thesis, École Centrale de Paris, France (1993).
M. Durán, E. Godoy and J.-C. Nédélec, Computing Green's function of elasticity in a half-plane with impedance boundary condition. C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725–731.
Durán, M., Muga, I. and Nédélec, J.-C., The Helmholtz equation in a locally perturbed half-plane with passive boundary. IMA J. Appl. Math. 71 (2006) 853876. CrossRef
Durán, M., Hein, R. and Nédélec, J.-C., Computing numerically the Green's function of the half-plane Helmholtz operator with impedance boundary conditions. Numer. Math. 107 (2007) 295314. CrossRef
Franssens, G.R., Calculation of the elasto-dynamics Green's function in layered media by means of a modified propagator matrix method. Geophys. J. Roy. Astro. Soc. 75 (1983) 669691. CrossRef
F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics. Springer-Verlag, New York, USA (1994).
Johnson, L.R., Green function's for Lamb's Problem. Geophys. J. Roy. Astro. Soc. 37 (1974) 99131. CrossRef
A.M. Linkov, Boundary Integral Equations in Elasticity Theory. Kluwer Academic Publishers, Dordrecht, Boston (2002).
Linkov, A.M., A theory of rupture pulse on softening interface with application to the Chi-Chi earthquake. J. Geophys. Res. 111 (2006) 114. CrossRef
J.-C. Nédélec, Acoustic and Electromagnetic Equations – Integral Representations for Harmonic Problems, Applied Mathematical Sciences 144. Springer, Germany (2001).
Richter, C. and Schmid, G., Green's, A function time-domain boundary element method for the elastodynamic half-plane. Int. J. Numer. Meth. Engrg. 46 (1999) 627648. 3.0.CO;2-Q>CrossRef
Spies, M., Green's tensor function for Lamb's problem: The general anisotropic case. J. Acoust. Soc. Am. 102 (1997) 24382441. CrossRef
T.R. Stacey and C.H. Page, Practical Handbook for Underground Rock Mechanics, Series on Rock and Soil Mechanics 12. Trans Tech Publications, Germany (1986).
Wang, C.-Y. and Achenbach, J.D., Lamb's problem for solids of general anisotropy. Wave Mot. 24 (1996) 227242. CrossRef