Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T16:02:27.103Z Has data issue: false hasContentIssue false

Raman laser: mathematical and numerical analysis of a model

Published online by Cambridge University Press:  15 June 2004

François Castella
Affiliation:
IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France. [email protected].
Philippe Chartier
Affiliation:
INRIA Rennes, Campus Beaulieu, 35042 Rennes Cedex, France. [email protected].; [email protected].
Erwan Faou
Affiliation:
INRIA Rennes, Campus Beaulieu, 35042 Rennes Cedex, France. [email protected].; [email protected].
Dominique Bayart
Affiliation:
ALCATEL Research & Innovation, Unité Transmissions Photoniques, Route de Nozay, 91460 Marcoussis, France. [email protected].; [email protected].; [email protected].
Florence Leplingard
Affiliation:
ALCATEL Research & Innovation, Unité Transmissions Photoniques, Route de Nozay, 91460 Marcoussis, France. [email protected].; [email protected].; [email protected].
Catherine Martinelli
Affiliation:
ALCATEL Research & Innovation, Unité Transmissions Photoniques, Route de Nozay, 91460 Marcoussis, France. [email protected].; [email protected].; [email protected].
Get access

Abstract

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtenhagen, M., Chang, T. and Nyman, B., Analysis of a multiple-pump Raman amplifiers. Appl. Phys. Lett. 78 (2000) 13221324. CrossRef
U. Ascher, R. Mattheij and R. Russel, Numerical Solution of Boundary Value for Ordinary Differential Equations. Prentice Hall, Englewood Cliffs (1988).
F. Castella, P. Chartier and E. Faou, Analysis of a Poisson system with boundary conditions. C. R. Acad. Sci. Paris, Sér. I 336 (2003) 703–708.
G. Golub and C. Van Loan, Matrix Computations. The Johns Hopkins University Press (1989).
E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration Springer-Verlag 31 Springer Ser. Comput. Math. Berlin (2002). Structure-preserving algorithms for ordinary differential equations.
Kidorf, H., Rottwitt, K., Nissov, M., Ma, M. and Rabarijaona, E., Pump Interactions in a 100-nm Bandwidth Raman Amplifier. IEEE Photonics Technology Letters 11 (1999) 530532. CrossRef
Pocholle, J., Papuchon, M., Raffy, J. and Desurvire, E., Non linearities and optical amplification in single mode fibers. Revue Technique Thomson-CSF 22 (1990) 187268.
Rini, M., Christiani, I. and Degiorgio, V., Numerical modeling and optimization of cascaded Raman fiber lasers. IEEE Journal of Quantum Electronics 36 (2000) 11171122. CrossRef