Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
CASTRO, MANUEL J.
GONZÁLEZ-VIDA, JOSÉ M.
and
PARÉS, CARLOS
2006.
NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME.
Mathematical Models and Methods in Applied Sciences,
Vol. 16,
Issue. 06,
p.
897.
Castro-Díaz, M. J.
Fernández-Nieto, E. D.
and
Ferreiro, A. M.
2006.
Numerical Mathematics and Advanced Applications.
p.
190.
Parés, Carlos
2006.
Numerical methods for nonconservative hyperbolic systems: a theoretical framework..
SIAM Journal on Numerical Analysis,
Vol. 44,
Issue. 1,
p.
300.
Castro, M.J.
García-Rodríguez, J.A.
González-Vida, J.M.
and
Parés, C.
2006.
A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows.
Computer Methods in Applied Mechanics and Engineering,
Vol. 195,
Issue. 19-22,
p.
2788.
Castro, M. J.
García, J. A.
González, J. M.
and
Parés, C.
2006.
Numerical Mathematics and Advanced Applications.
p.
288.
Castro, M.J.
Gallardo, J.M.
Muñoz, M.L.
and
Parés, C.
2006.
Numerical Mathematics and Advanced Applications.
p.
662.
Castro Díaz, M. J.
Chacón Rebollo, T.
Fernández‐Nieto, E. D.
and
Parés, Carlos
2007.
On Well‐Balanced Finite Volume Methods for Nonconservative Nonhomogeneous Hyperbolic Systems.
SIAM Journal on Scientific Computing,
Vol. 29,
Issue. 3,
p.
1093.
Noelle, Sebastian
Xing, Yulong
and
Shu, Chi-Wang
2007.
High-order well-balanced finite volume WENO schemes for shallow water equation with moving water.
Journal of Computational Physics,
Vol. 226,
Issue. 1,
p.
29.
CASTRO, MANUEL J.
PARDO MILANÉS, ALBERTO
and
PARÉS, CARLOS
2007.
WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE.
Mathematical Models and Methods in Applied Sciences,
Vol. 17,
Issue. 12,
p.
2055.
Muñoz-Ruiz, María Luz
and
Parés, Carlos
2007.
Godunov method for nonconservative hyperbolic systems.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 41,
Issue. 1,
p.
169.
Castro, Manuel J.
Ferreiro-Ferreiro, Ana M.
García-Rodríguez, José A.
González-Vida, José M.
and
Parés, Carlos
2007.
Modèles Saint-Venant bicouche: application à la simulation du transport de polluants.
La Houille Blanche,
Vol. 93,
Issue. 5,
p.
85.
Bouchut, François
2007.
Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances.
Vol. 2,
Issue. ,
p.
189.
Gallardo, José M.
Parés, Carlos
and
Castro, Manuel
2007.
On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas.
Journal of Computational Physics,
Vol. 227,
Issue. 1,
p.
574.
Bresch, D.
Díaz, M. J. C.
Fernández-Nieto, E. D.
Ferreiro, A. M.
and
Mangeney, A.
2008.
Hyperbolic Problems: Theory, Numerics, Applications.
p.
247.
Castro, M.J.
García-Rodríguez, J.A.
González-Vida, J.M.
and
Parés, C.
2008.
Solving shallow-water systems in 2D domains using Finite Volume methods and multimedia SSE instructions.
Journal of Computational and Applied Mathematics,
Vol. 221,
Issue. 1,
p.
16.
Pelanti, Marica
Bouchut, François
and
Mangeney, Anne
2008.
A Roe-type scheme for two-phase shallow granular flows over variable topography.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 42,
Issue. 5,
p.
851.
Rosatti, G.
Murillo, J.
and
Fraccarollo, L.
2008.
Generalized Roe schemes for 1D two-phase, free-surface flows over a mobile bed.
Journal of Computational Physics,
Vol. 227,
Issue. 24,
p.
10058.
Díaz, M.J. Castro
Rebollo, T. Chacón
Fernández-Nieto, E.D.
Vida, J.M. González
and
Parés, C.
2008.
Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems. Application to the dam break of Aznalcóllar.
Computer Methods in Applied Mechanics and Engineering,
Vol. 197,
Issue. 45-48,
p.
3932.
Bouchut, François
and
Morales de Luna, Tomás
2008.
An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 42,
Issue. 4,
p.
683.
Castro Díaz, M.J.
Fernández-Nieto, E.D.
and
Ferreiro, A.M.
2008.
Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods.
Computers & Fluids,
Vol. 37,
Issue. 3,
p.
299.