Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T03:54:55.906Z Has data issue: false hasContentIssue false

The numerical interface coupling of nonlinearhyperbolic systems of conservation laws: II. The case of systems

Published online by Cambridge University Press:  15 August 2005

Edwige Godlewski
Affiliation:
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France. [email protected]
Kim-Claire Le Thanh
Affiliation:
CEA, BP 12, 91680 Bruyères le Chatel, France. [email protected]
Pierre-Arnaud Raviart
Affiliation:
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France. [email protected]
Get access

Abstract

We study the theoretical and numericalcoupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the couplingpreserves in a weak sense the continuity of the solution at the interfacewithout imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling inthe linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations ofstate. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numericalsimulations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. and Karni, S., Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594623. CrossRef
Adimurthi, J.J. and Veerappa Gowda, G.D., Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179208. CrossRef
E. Audusse and B. Perthame, Uniqueness for a scalar conservation law with discontinuous flux via adapted entropies, Inria research report No. 5261 (2004), France.
Bale, D., LeVeque, R., Mitran, S. and Rossmanith, J., A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955978. CrossRef
T. Barberon, Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles. Thesis, University of Toulon, France (2002).
F. Coquel, E. Godlewski, P.-A. Raviart et al., Numerical coupling of models in the context of fluid flows, work in preparation.
Cordier, S., Hyperbolicity of the hydrodynamic model of plasmas under the quasi-neutrality hypothesis. Math. Methods Appl. Sci. 18 (1995) 627647. CrossRef
Després, B., Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition. Numer. Math. 89 (2001) 99134. CrossRef
Diehl, S., On scalar conservation laws with point source and discontinuous flux function. SIAM J. Numer. Anal. 26 (1995) 14251451. CrossRef
Dubois, F. and Le Floch, P., Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93122. CrossRef
Fedkiw, R., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999) 457492. CrossRef
Gallice, G., Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94 (2003) 673713. CrossRef
Gisclon, M., Étude des conditions aux limites pour un système strictement hyperbolique via l'approximation parabolique. J. Math. Pures Appl. 75 (1996) 485508.
M. Gisclon and D. Serre, Étude des conditions aux limites pour un système hyperbolique, via l'approximation parabolique. C. R. Acad. Sci. Paris, Série I 319 (1994) 377–382.
Gisclon, M. and Serre, D., Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359380. CrossRef
E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118, Springer, New York (1996).
Godlewski, E. and Raviart, P.-A., The numerical coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math. 97 (2004) 81130. CrossRef
Göz, M. and Munz, C.-D., Approximate Riemann solvers for fluid flow with material interfaces. Numerical methods for wave propagation (Manchester, 1995), Kluwer Acad. Publ., Dordrecht. Fluid Mech. Appl. 47 (1998) 211235.
Greenberg, J.M., Leroux, A.Y., Baraille, R. and Noussair, A., Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 19802007. CrossRef
Harten, A., Lax, P.D. and van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 3561. CrossRef
Isaacson, E. and Temple, B., Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 12601278. CrossRef
Karlsen, K., Risebro, N. and Towers, J., Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623664. CrossRef
Klausen, R. and Risebro, N., Stability of conservation laws with discontinuous coefficients. J. Differential Equations 157 (1999) 4160. CrossRef
C. Klingenberg and N.H. Risebro, Stability of a resonant system of conservation laws modeling polymer flow with gravitation, J. Differential Equations 170 (2001) 344–380. CrossRef
S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface. Thesis, University Paris 6, France (2001).
K.-C. Le Thanh and P.-A. Raviart, Un modèle de plasma partiellement ionisé. Rapport CEA-R-6036, France (2003).
Lyons, W.K., Conservation laws with sharp inhomogeneities. Quart. Appl. Math. 40 (1983) 385393. CrossRef
S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. Ntnu Preprints on Conservation Laws 2003-077 (2003).
C.-D. Munz, On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. (1994), 17–42.
T. Pougeard Dulimbert, Extraction de faisceaux d'ions à partir de plasmas neutres: Modélisation et simulation numérique. Thesis, University Paris 6, France (2001).
Seguin, N. and Vovelle, J., Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221257. CrossRef
D. Serre, Systèmes de lois de conservation I and II. Diderot éditeur, Paris (1996).
Towers, J., A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 11971218. CrossRef
Y.B. Zel'dovich and Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Vol. II. Academic Press (1967).