Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T14:57:27.425Z Has data issue: false hasContentIssue false

Numerical boundary layers for hyperbolic systems in 1-D

Published online by Cambridge University Press:  15 April 2002

Claire Chainais-Hillairet
Affiliation:
UMPA, ENS-Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
Emmanuel Grenier
Affiliation:
UMPA, ENS-Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
Get access

Abstract

The aim of this paper is to investigate the stabilityof boundary layers which appear in numerical solutionsof hyperbolic systems of conservation laws in one spacedimension on regular meshes. We prove stability under a sizecondition for Lax Friedrichs type schemes and inconditionnalstability in the scalar case. Examples of unstable boundary layersare also given.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardos, C., Leroux, A.-Y. and Nédélec, J.-C., First order quasilinear equations with boundary conditions. Partial Differential Equations 4 (1979) 1017-1034. CrossRef
Y. Coudière, J.-P. Vila and P. Villedieu, Convergence of a finite-volume time-explicit scheme for symmetric linear hyperbolic systems on bounded domains. C. R. Acad. Sci. Paris, Sér. I Math. 331 (2000) 95-100.
Dubois, F. and LeFloch, P., Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93-122. CrossRef
Gisclon, M., Étude des conditions aux limites pour un système strictement hyperbolique, via l'approximation parabolique. J. Math. Pures Appl. 75 (1996) 485-508.
Gisclon, M. and Serre, D., Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382.
Gisclon, M. and Serre, D., Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 359-380. CrossRef
Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986) 325-344. CrossRef
Grenier, E. and Guès, O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110-146. CrossRef
Joseph, K.T. and LeFloch, P.G., Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ration. Mech. Anal . 147 (1999) 47-88. CrossRef
T.T. Li and W.C. Yu, Boundary value problems for quasilinear hyperbolic systems. Math. series V. Duke Univ., Durham (1985).
T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985) 108 p.
Rauch, J.B. and Massey, F.J., Differentiability, III of solutions to hyperbolic initial boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303-318.
D. Serre, Sur la stabilité des couches limites de viscosité, preprint.
M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987.