Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T11:13:45.847Z Has data issue: false hasContentIssue false

Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations*

Published online by Cambridge University Press:  30 November 2010

Noel J. Walkington*
Affiliation:
Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA. [email protected]
Get access

Abstract

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baňas, L., Prohl, A. and Schätzle, R., Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math. 115 (2010) 395432. CrossRef
Barrett, J.W., Feng, X. and Prohl, A., Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 40 (2006) 175199. CrossRef
Becker, R., Feng, X. and Prohl, A., Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 17041731. CrossRef
F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vorticies. Kluwer (1995).
R. Cohen, R. Hardt, D. Kinderlehrer, S. Lin and M. Luskin, Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987).
Du, Q., Guo, B. and Shen, J., Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39 (2001) 735762. CrossRef
Duzaar, F., Kristensen, J. and Mingione, G., The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602 (2007) 1758.
Ericksen, J., Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 2234.
Ericksen, J., Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10 (1962) 189196. CrossRef
Ericksen, J., Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987) 381392.
Frank, F.C., On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 1928. CrossRef
G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994).
V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009).
Girault, V., Nochetto, R.H. and Scott, R., Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279330. CrossRef
R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987).
Hardt, R. and Lin, F.H., Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113123. CrossRef
Hardt, R., Kinderlehrer, D. and Lin, F.H., Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547570. CrossRef
Hu, Q., Tai, X.-C. and Winther, R., A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47 (2009) 15001523. CrossRef
Jerard, R. and Soner, M., Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99125. CrossRef
Leslie, F., Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265283. CrossRef
F. Leslie, Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1–81.
F.H. Lin, Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995).
Lin, F.H., Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 599622. CrossRef
Lin, F.H., Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323359. 3.0.CO;2-E>CrossRef
F.H. Lin and C. Liu, Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501–537.
Lin, F.H. and Liu, C., Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135156. CrossRef
Lin, P., Liu, C. and Zhang, H., An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227 (2007) 14111427. CrossRef
Liu, C. and Walkington, N.J., Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725741. CrossRef
Liu, C. and Walkington, N.J., Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205222. CrossRef
Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355426. CrossRef
Oseen, C.W., The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883889. CrossRef
I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004).
E.G. Virga, Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994).
Walkington, N.J., Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 46804710. CrossRef