Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T18:04:54.278Z Has data issue: false hasContentIssue false

Multiscale Finite Element approach for “weakly” random problemsand related issues

Published online by Cambridge University Press:  08 April 2014

Claude Le Bris
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.. [email protected] INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France.
Frédéric Legoll
Affiliation:
INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France. Laboratoire Navier, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.; [email protected]; [email protected]
Florian Thomines
Affiliation:
INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France. Laboratoire Navier, École Nationale des Ponts et Chaussées, Université Paris-Est, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.; [email protected]; [email protected]
Get access

Abstract

We address multiscale elliptic problems with random coefficients that are a perturbationof multiscale deterministic problems. Our approach consists in taking benefit of theperturbative context to suitably modify the classical Finite Element basis into adeterministic multiscale Finite Element basis. The latter essentially shares the sameapproximation properties as a multiscale Finite Element basis directly generated on therandom problem. The specific reference method that we use is the Multiscale Finite ElementMethod. Using numerical experiments, we demonstrate the efficiency of our approach and thecomputational speed-up with respect to a more standard approach. In the stationarysetting, we provide a complete analysis of the approach, extending that available for thedeterministic periodic setting.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnes, J. and Efendiev, Y.R., Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput. 30 (2009) 23192339. Google Scholar
Allaire, G. and Amar, M., Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209243. Google Scholar
Allaire, G. and Brizzi, R., A multiscale finite element method for numerical homogenization. SIAM Multiscale Model. Simul. 4 (2005) 790812. Google Scholar
A. Anantharaman, Ph.D. thesis, Thèse de l’Université Paris-Est (2011). Available at http://tel.archives-ouvertes.fr/tel-00558618/fr
A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in Multiscale Modeling and Analysis for Materials Simulation, vol. 22 of Lect. Notes Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore (2011) 197–272.
Anantharaman, A. and Le Bris, C., Homogénéisation d’un matériau périodique faiblement perturbé aléatoirement [Homogenization of a weakly randomly perturbed periodic material]. C.R. Acad. Sci. Sér. I 348 (2010) 529534. Google Scholar
Anantharaman, A. and Le Bris, C., A numerical approach related to defect-type theories for some weakly random problems in homogenization. SIAM Multiscale Model. Simul. 9 (2011) 513544. Google Scholar
Anantharaman, A. and Le Bris, C., Elements of mathematical foundations for a numerical approach for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103-1143. Google Scholar
Avellaneda, M. and Lin, F. H., Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40 (1987) 803847. Google Scholar
Bal, G., Garnier, J., Motsch, S. and Perrier, V., Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008) 126. Google Scholar
Bal, G. and Jing, W., Corrector theory for MsFEM and HMM in random media. SIAM Multiscale Model. Simul. 9 (2011) 15491587. Google Scholar
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, New York (1978).
Blanc, X., Costaouec, R., C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes and Related Fields 18 (2012) 3166. (preliminary version available at http://cermics.enpc.fr/˜legoll/hdr/FL24.pdf). Google Scholar
Blanc, X., Le Bris, C. and Lions, P.-L., Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C.R. Acad. Sci. Sér. I 343 (2006) 717724. Google Scholar
Blanc, X., Le Bris, C. and Lions, P.-L., Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 3463. Google Scholar
Bourgeat, A. and Piatnitski, A., Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21 (1999) 303315. Google Scholar
L. Carballal Perdiz, Etude d’une mé thodologie multié chelles appliqué e à diffé rents problè mes en milieu continu et discret (in french). Thèse de l’Université Toulouse III (2010). Available at http://thesesups.ups-tlse.fr/1170/.
Chen, Z., Multiscale methods for elliptic homogenization problems, Numer. Methods Partial Differ. Eq. 22 (2006) 317360. Google Scholar
Chen, Z., Cui, M., Savchuk, T. Y. and Yu, X., The multiscale finite element method with nonconforming elements for elliptic homogenization problems. SIAM Multiscale Model. Simul. 7 (2008) 517538. Google Scholar
Chen, Z. and Hou, T.Y., A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72 (2002) 541576. Google Scholar
Chen, Z. and Savchuk, T.Y., Analysis of the multiscale finite element method for nonlinear and random homogenization problems. SIAM J. Numer. Anal. 46 (2008) 260279. Google Scholar
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978).
D. Cioranescu and P. Donato, An introduction to homogenization. In vol. 17 of Oxford Lect. Ser. Math. Appl. The Clarendon Press, Oxford University Press, New York (1999).
Costaouec, R., Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings. Appl. Math. Res. Express 2012 (2012) 76104. Google Scholar
Costaouec, R., Le Bris, C. and Legoll, F., Approximation numérique d’une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C.R. Acad. Sci. Série I 348 (2010) 99103. Google Scholar
Dostert, P., Efendiev, Y.R. and Hou, T.Y., Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mechanics Engrg. 197 (2008) 34453455. Google Scholar
E, W. and Engquist, B., The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87132. Google Scholar
W. E and B. Engquist, The Heterogeneous Multiscale Method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44, Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2005) 89–110.
E, W., Engquist, B., Li, X., Ren, W. and Vanden-Eijnden, E., Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367450. Google Scholar
Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods: theory and applications, Surveys and tutorials in the applied mathematical sciences. Springer, New York (2009).
Efendiev, Y.R., Hou, T.Y. and Ginting, V., Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2 (2004) 553589. Google Scholar
Efendiev, Y.R., Hou, T.Y. and Wu, X.-H., Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37 (2000) 888910. Google Scholar
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edn., Classics in Mathematics. Springer (2001).
Ginting, V., Malqvist, A. and Presho, M., A novel method for solving multiscale elliptic problems with randomly perturbed data. SIAM Multiscale Model. Simul. 8 (2010) 977996. Google Scholar
Gloria, A., An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM Multiscale Model. Simul. 7 (2008) 274293. Google Scholar
Hou, T.Y. and Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169189. Google Scholar
Hou, T.Y., Wu, X.-H. and Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913943. Google Scholar
Hou, T.Y., Wu, X.-H. and Zhang, Y., Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2 (2004) 185205. Google Scholar
V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994).
C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Applications 2009, in Proc. of ENUMATH 2009. Edited by G. Kreiss et al. Springer Lect. Ser. Notes Comput. Sci. Engrg. (2010) 29–45.
Le Bris, C., Legoll, F. and Thomines, F., Rate of convergence of a two-scale expansion for some weakly stochastic homogenization problems. Asymptot. Anal. 80 (2012) 237267. Google Scholar
Legoll, F. and Thomines, F., On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients. ESAIM: M2AN 48 (2014) 347386. Google Scholar
A. Lozinski, Habilitation à Diriger des Recherches, Université Paul Sabatier, Toulouse (2010). Available at http://www.math.univ-toulouse.fr/.
Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in vol. III of Intern. Congress of Math., Eur. Math. Soc. Zürich (2006) 1255–1270.
Mittal, Y., Limiting behavior of maxima in stationary Gaussian sequences. Ann. Probab. 2 (1974) 231242. Google Scholar
G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in vol. 10 of Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, 1979. Edited by J. Fritz, J.L. Lebaritz and D. Szasz. Colloquia Mathematica Societ. J. Bolyai, North-Holland (1981) 835–873.
L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, vol. 31 of Progr. Nonlinear Differ. Equ. Appl., edited by A. Cherkaev and R. Kohn. Birkhäuser (1987).