Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:25:05.004Z Has data issue: false hasContentIssue false

Mortar finite element discretization of a model coupling Darcy and Stokes equations

Published online by Cambridge University Press:  03 April 2008

Christine Bernardi
Affiliation:
Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. [email protected]; [email protected]
Tomás Chacón Rebollo
Affiliation:
Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. [email protected]; [email protected] Departamento de Ecuaciones Diferenciales y Análisis Numerico, Universidad de Sevilla, Tarfia s/n, 41012 Sevilla, Spain. [email protected]
Frédéric Hecht
Affiliation:
Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. [email protected]; [email protected]
Zoubida Mghazli
Affiliation:
Équipe d'Ingénierie Mathématique, LIRNE, Faculté des Sciences, Université Ibn Tofail, B.P. 133, Kénitra, Morocco. [email protected]
Get access

Abstract

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments confirm the interest of the discretization.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achdou, Y. and Bernardi, C., Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C. R. Acad. Sci. Paris Sér. I 333 (2001) 693698. CrossRef
Achdou, Y., Bernardi, C. and Coquel, F., A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 1742. CrossRef
R.A. Adams, Sobolev Spaces. Academic Press (1975).
S. Antontsev, A.V. Kazhikhov and V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids [English transl.], Studies in Mathematics and its Applications 22. North-Holland (1990).
Ben Belgacem, F., The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173197. CrossRef
Bernardi, C. and Raugel, G., Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 7179. CrossRef
C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13–51.
C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, Chap. 8, P.-L. George Ed., Hermès (2001) 251–278.
C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications 45. Springer-Verlag (2004).
Bernardi, C., Hecht, F. and Pironneau, O., Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: M2AN 39 (2005) 735. CrossRef
Bernardi, C., Maday, Y. and Rapetti, F., Basics and some applications of the mortar element method. GAMM – Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97123.
Bernardi, C., Hecht, F. and Mghazli, Z., Mortar finite element discretization for the flow in a non homogeneous porous medium. Comput. Methods Appl. Mech. Engrg. 196 (2007) 15541573. CrossRef
Boland, J. and Nicolaides, R., Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722731. CrossRef
Braess, D. and Verfürth, R., A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 24312444. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag (1991).
Burman, E. and Hansbo, P., A unified stabilized method for Stokes' and Darcy's equations. J. Comput. Applied Math. 198 (2007) 3551. CrossRef
D.-G. Calugaru, Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique. Ph.D. thesis, Université de Franche-Comté, Besançon, France (2002).
Carstensen, C. and Hu, J., A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107 (2007) 473502. CrossRef
Dauge, M., Neumann and mixed problems on curvilinear polyhedra. Integr. Equat. Oper. Th. 15 (1992) 227261. CrossRef
G. de Marsily, Quantitative Hydrology. Groundwater Hydrology for Engineers. Academic Press, New York (1986).
Discacciati, M., Miglio, E. and Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 5774. CrossRef
Fortin, M., Old and new elements for incompressible flows. Internat. J. Numer. Methods Fluids 1 (1981) 347364. CrossRef
J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. (Submitted).
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag (1986).
Girault, V., Glowinski, R. and López, H., A domain decomposition and mixed method for a linear parabolic boundary value problem. IMA J. Numer. Anal. 24 (2004) 491520. CrossRef
P. Grisvard, Elliptic Problems in Nonsmooth Domains . Pitman (1985).
F. Hecht and O. Pironneau, FreeFem++, see www.freefem.org.
Layton, W.J., Schieweck, F. and Yotov, I., Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2002) 21952218. CrossRef
R. Lewandowski, Analyse mathématique et océanographie, Collection Recherches en Mathématiques Appliquées. Masson (1997).
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod (1968).
Nédélec, J.-C., Mixed finite elements in $\mathbb R^3$ . Numer. Math. 35 (1980) 315341.
M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Lect. Notes Pure Appl. Math. 167, Dekker (1995) 185–201.
Rajagopal, K.R., On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007) 215252. CrossRef
P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lect. Notes Math. 606, Springer (1977) 292–315.
J.M. Urquiza, D. N'Dri, A. Garon and M.C. Delfour, Coupling Stokes and Darcy equations. Applied Numer. Math. (2007) (in press).
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques . Wiley & Teubner (1996).