Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:19:20.576Z Has data issue: false hasContentIssue false

Lagrange multipliers for higher order elliptic operators

Published online by Cambridge University Press:  15 April 2005

Carlos Zuppa*
Affiliation:
Departamento de Matemáticas, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis, Argentina. [email protected]
Get access

Abstract

In this paper, the Babuška's theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Agmon, Lectures on elliptic boundary value problems. D. Van Nostrand, Princeton, N. J. (1965).
I. Babuška, The finite element method with lagrange multipliers. Numer. Math. 20 (1973) 179–192.
I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations. Academic Press, New York (1972) 5–359.
Belytschko, T., Krongauz, Y.. D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Engrg. 139 (1996a) 347. CrossRef
J.M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, Translations of Mathematical Monographs 17, American Mathematical Society, Providence, R.I. (1968).
S.C. Brener and L.R. Scott, The mathematical theory of finite elements methods. Springer-Verlag, New York (1994).
C.A. Duarte and J.T. Oden, H-p clouds - an h-p meshless method. Num. Methods Partial Differential Equations. 1 (1996) 1–34.
S. Li and W.K. Liu, Meshfree and particle methods and their applications. Applied Mechanics Reviews (ASME) (2001).
J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968).
G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, USA (2002).
J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
J.T. Oden and J.N. Reddy, An introduction to the mathematical theory of finite elements. Wiley Interscience, New York (1976).
K.T. Smith, Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc. 67 (1961) 368–370.
Volevič, L.R., Solvability of boundary value problems for general elliptic systems. Amer. Math. Soc. Transl. 67 (1968) 182225.
C. Zuppa, G. Simonetti and A. Azzam, The h-p Clouds meshless method and lagrange multipliers for higher order elliptic operators . In preparation.