Published online by Cambridge University Press: 12 January 2008
We study a two-grid scheme fully discrete in time andspace for solving the Navier-Stokes system. In the first step, thefully non-linear problem is discretized in space on a coarse gridwith mesh-size H and time step k. In the second step, theproblem is discretized in space on a fine grid with mesh-size hand the same time step, and linearized around the velocity u H computed in the first step. The two-grid strategy is motivated bythe fact that under suitable assumptions, the contribution ofu H to the error in the non-linear term, is measured in theL 2 norm in space and time, and thus has a higher-order than ifit were measured in the H 1 norm in space. We present thefollowing results: if h = H2 = k, then the global error ofthe two-grid algorithm is of the order of h, the same as wouldhave been obtained if the non-linear problem had been solveddirectly on thefine grid.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.