Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:16:11.441Z Has data issue: false hasContentIssue false

Free-energy-dissipative schemes for the Oldroyd-B model

Published online by Cambridge University Press:  08 April 2009

Sébastien Boyaval
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées (ParisTech/Université Paris-Est), 6 & 8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] MICMAC team-project, INRIA, Domaine de Voluceau, BP. 105, Rocquencourt, 78153 Le Chesnay Cedex, France.
Tony Lelièvre
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées (ParisTech/Université Paris-Est), 6 & 8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] MICMAC team-project, INRIA, Domaine de Voluceau, BP. 105, Rocquencourt, 78153 Le Chesnay Cedex, France.
Claude Mangoubi
Affiliation:
CERMICS, École Nationale des Ponts et Chaussées (ParisTech/Université Paris-Est), 6 & 8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée Cedex 2, France. [email protected]; [email protected]; [email protected] MICMAC team-project, INRIA, Domaine de Voluceau, BP. 105, Rocquencourt, 78153 Le Chesnay Cedex, France. Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel.
Get access

Abstract

In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian Fluid Mech.123 (2004) 281–285], for which solutions in some benchmark problems have been obtained beyond the limiting Weissenberg numbers for the standard scheme (see [Hulsen et al.J. Non-Newtonian Fluid Mech. 127 (2005) 27–39]). Our analysis gives some tracks to understand these numerical observations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations, Volume VII, R. Vichnevetsky and R.S. Steplemen Eds. (1992).
Bajaj, M., Pasquali, M. and Prakash, J.R., Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder. J. Rheol. 52 (2008) 197223. CrossRef
Baranger, J. and Machmoum, A., Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. Comput. Methods Appl. Mech. Engrg. 148 (1997) 3952. CrossRef
J.W. Barrett and S. Boyaval, Convergence of a finite element approximation to a regularized Oldroyd-B model (in preparation).
Barrett, J.W., Schwab, C. and Süli, E., Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939983. CrossRef
A.N. Beris and B.J. Edwards, Thermodynamics of flowing systems with internal microstructure. Oxford University Press (1994).
Bonvin, J., Picasso, M. and Stenberg, R., EVSS, GLS methods for a three fields Stokes problem arising from viscoelastic flows. Comp. Meth. Appl. Mech. Eng. 190 (2001) 38933914. CrossRef
F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solution of Elliptic System, W. Hackbusch Ed. (1984) 11–19.
Brezzi, F., Douglas, J., Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217235. CrossRef
F. Brezzi, J. Douglas, Jr. and L.D. Marini, Recent results on mixed finite element methods for second order elliptic problems, in Vistas in Applied Mathematics: Numerical Analysis, Atmospheric Sciences, Immunology, A.V. Balakrishnan, A.A. Dorodnitsyn and J.L. Lions Eds. (1986) 25–43.
Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comp. Meth. Appl. Mech. Engrg. 156 (1998) 185210. CrossRef
Crouzeix, M. and Raviart, P.A., Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 3 (1973) 3375.
A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer Verlag, New-York (2004).
Fattal, R. and Kupferman, R., Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281285. CrossRef
Fattal, R. and Kupferman, R., Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 2337. CrossRef
Fattal, A., Hald, O.H., Katriel, G. and Kupferman, R., Global stability of equilibrium manifolds, and “peaking" behavior in quadratic differential systems related to viscoelastic models. J. Non-Newtonian Fluid Mech. 144 (2007) 3041. CrossRef
E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of Numerical Analysis, Vol. 8, P.G. Ciarlet et al. Eds., Elsevier (2002) 543–661.
Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 12931316. CrossRef
Guillopé, C. and Saut, J.C., Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlin. Anal. TMA 15 (1990) 849869. CrossRef
Hu, D. and Lelièvre, T., New entropy estimates for the Oldroyd-B model, and related models. Commun. Math. Sci. 5 (2007) 906916. CrossRef
Hughes, T.J.R. and Franca, L.P., A new finite element formulation for CFD: VII the Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. App. Mech. Eng. 65 (1987) 8596. CrossRef
Hulsen, M.A., A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech. 38 (1990) 93100. CrossRef
Hulsen, M.A., Fattal, R. and Kupferman, R., Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (2005) 2739. CrossRef
Jourdain, B., Le Bris, C., Lelièvre, T. and Otto, F., Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 (2006) 97148. CrossRef
Kechkar, N. and Silvester, D., Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 110. CrossRef
Keiller, R.A., Numerical instability of time-dependent flows. J. Non-Newtonian Fluid Mech. 43 (1992) 229246. CrossRef
R. Keunings, Simulation of viscoelastic fluid flow, in Fundamentals of Computer Modeling for Polymer Processing, C. Tucker Ed., Hanse (1989) 402–470.
R. Keunings, A survey of computational rheology, in Proc. 13th Int. Congr. on Rheology, D.M. Binding et al Eds., British Society of Rheology (2000) 7–14.
Kupferman, R., Mangoubi, C. and Titi, E., Beale-Kato-Majda, A breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Comm. Math. Sci. 6 (2008) 235256. CrossRef
Kwon, Y., Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations. Korea-Australia Rheology Journal 16 (2004) 183191.
Kwon, Y. and Leonov, A.V., Stability constraints in the formulation of viscoelastic constitutive equations. J. Non-Newtonian Fluid Mech. 58 (1995) 2546. CrossRef
Lee, Y. and New, J. Xu formulations positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput. Methods Appl. Mech. Engrg. 195 (2006) 11801206. CrossRef
Leonov, A.I., Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newton. Fluid Mech. 42 (1992) 323350. CrossRef
Lin, F.-H., Liu, C. and Zhang, P.W., On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math. 58 (2005) 14371471. CrossRef
P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21 (2000) 131–146.
Lozinski, A. and Owens, R.G., An energy estimate for the Oldroyd-B model: theory and applications. J. Non-Newtonian Fluid Mech. 112 (2003) 161176. CrossRef
R. Mneimne and F. Testard, Introduction à la théorie des groupes de Lie classiques. Hermann (1986).
Morton, K.W., Priestley, A. and Süli, E., Convergence analysis of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625653. CrossRef
H.C. Öttinger, Beyond Equilibrium Thermodynamics. Wiley (2005).
Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 3 (1982) 309332. CrossRef
Rallison, J.M. and Hinch, E.J., Do we understand the physics in the constitutive equation? J. Non-Newtonian Fluid Mech. 29 (1988) 3755. CrossRef
Sandri, D., Non integrable extra stress tensor solution for a flow in a bounded domain of an Oldroyd fluid. Acta Mech. 135 (1999) 9599. CrossRef
Scott, L.R. and Vogelius, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111143. CrossRef
Süli, E., Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53 (1988) 459483. CrossRef
R. Temam, Sur l'approximation des équations de Navier-Stokes. C. R. Acad. Sci. Paris, Sér. A 262 (1966) 219–221.
Thomases, B. and Shelley, M., Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19 (2007) 103103. CrossRef
Wapperom, P. and Hulsen, M.A., Thermodynamics of viscoelastic fluids: the temperature equation. J. Rheol. 42 (1998) 9991019. CrossRef
Wapperom, P., Keunings, R. and Legat, V., The backward-tracking lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91 (2000) 273295. CrossRef