Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T11:32:45.687Z Has data issue: false hasContentIssue false

Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities

Published online by Cambridge University Press:  01 August 2009

Clément Cancès*
Affiliation:
École Normale Supérieure de Cachan, Antenne de Bretagne, Campus de Ker Lann, Avenue Robert Schuman, 35170 Bruz, France. [email protected]
Get access

Abstract

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step tends to 0 is then proven. We also show, under assumptions on the initial data, a uniform estimate on the flux, which is then used during the uniqueness proof. A density argument allows us to relax the assumptions on the initial data and to extend the existence-uniqueness frame to a family of solution obtained as limit of approximations. A numerical example is then given to illustrate the behavior of the model.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adimurthi, G.D. Veerappa Gowda, Conservation law with discontinuous flux. J. Math. Kyoto Univ. 43 (2003) 2770. CrossRef
Adimurthi, J. Jaffré, G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179208 (electronic). CrossRef
Adimurthi, S. Mishra, G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783837. CrossRef
Adimurthi, S. Mishra, G.D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Netw. Heterog. Media 2 (2007) 127157 (electronic). CrossRef
Alt, H.W. and Luckhaus, S., Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311341.
Bachmann, F., Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Adv. Differ. Equ. 9 (2004) 13171338.
F. Bachmann, Equations hyperboliques scalaires à flux discontinu. Ph.D. Thesis, Université Aix-Marseille I, France (2005).
F. Bachmann, Finite volume schemes for a non linear hyperbolic conservation law with a flux function involving discontinuous coefficients. Int. J. Finite Volumes 3 (2006) (electronic).
Bachmann, F. and Vovelle, J., Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm. Partial Differ. Equ. 31 (2006) 371395. CrossRef
Bertsch, M., Dal Passo, R. and van Duijn, C.J., Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35 (2003) 245267 (electronic). CrossRef
Blanchard, D. and Porretta, A., Stefan problems with nonlinear diffusion and convection. J. Differ. Equ. 210 (2005) 383428. CrossRef
H. Brézis, Analyse Fonctionnelle : Théorie et applications. Masson (1983).
C. Cancès, Écoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse des effets liés aux discontinuités de la pression capillaire. Ph.D. Thesis, Université de Provence, France (2008).
Cancès, C., Nonlinear parabolic equations with spatial discontinuities. Nonlinear Differ. Equ. Appl. 15 (2008) 427456. CrossRef
C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. I. Convergence to an entropy solution. arXiv:0902.1877 (submitted).
C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. II. Occurrence of non-classical shocks to model oil-trapping. arXiv:0902.1872 (submitted).
C. Cancès and T. Gallouët, On the time continuity of entropy solutions. arXiv:0812.4765v1 (2008).
Cancès, C., Gallouët, T. and Porretta, A., Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound. 11 (2009) 239258. CrossRef
Carrillo, J., Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269361. CrossRef
Chainais-Hillairet, C., Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129156. CrossRef
Droniou, J., A density result in Sobolev spaces. J. Math. Pures Appl. (9) 81 (2002) 697714. CrossRef
Enchéry, G., Eymard, R. and Michel, A., Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43 (2006) 24022422. CrossRef
Eymard, R., Gallouët, T., Ghilani, M. and Herbin, R., Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563594. CrossRef
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (2000) 713–1020.
Gagneux, G. and Madaune-Tort, M., Unicité des solutions faibles d'équations de diffusion-convection. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 919924.
Jimenez, J., Some scalar conservation laws with discontinuous flux. Int. J. Evol. Equ. 2 (2007) 297315.
K.H. Karlsen, N.H. Risebro and J.D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differ. Equ. 2002 (2002) n° 93, 1–23 (electronic).
Karlsen, K.H., Risebro, N.H. and Towers, J.D., Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623664. CrossRef
Karlsen, K.H., Risebro, N.H. and Towers, J.D., L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3 (2003) 149.
Mascia, C., Porretta, A. and Terracina, A., Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163 (2002) 87124. CrossRef
Michel, A. and Vovelle, J., Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41 (2003) 22622293 (electronic). CrossRef
A. Michel, C. Cancès, T. Gallouët and S. Pegaz, Numerical comparison of invasion percolation models and finite volume methods for buoyancy driven migration of oil in discontinuous capillary pressure fields. (In preparation).
Otto, F., L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131 (1996) 2038. CrossRef
Seguin, N. and Vovelle, J., Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221257. CrossRef
Towers, J.D., Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38 (2000) 681698 (electronic). CrossRef
Towers, J.D., A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 11971218 (electronic). CrossRef
van Duijn, C.J., Molenaar, J. and de Neef, M.J., The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transport Porous Med. 21 (1995) 7193. CrossRef
Vovelle, J., Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563596. CrossRef