Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T19:57:36.825Z Has data issue: false hasContentIssue false

Derivation of a homogenized two-temperature model from the heatequation

Published online by Cambridge University Press:  09 September 2014

Laurent Desvillettes
Affiliation:
Ecole Normale Supérieure de Cachan, CMLA, 61 Av. du Pdt. Wilson, 94235 Cachan cedex, France. . [email protected]
François Golse
Affiliation:
Ecole Polytechnique, Centre de Mathématiques L. Schwartz, 91128 Palaiseau cedex, France.; [email protected]
Valeria Ricci
Affiliation:
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy.; [email protected]
Get access

Abstract

This work studies the heat equation in a two-phase material with spherical inclusions.Under some appropriate scaling on the size, volume fraction and heat capacity of theinclusions, we derive a coupled system of partial differential equations governing theevolution of the temperature of each phase at a macroscopic level of description. Thecoupling terms describing the exchange of heat between the phases are obtained by usinghomogenization techniques originating from [D. Cioranescu, F. Murat, Collège de FranceSeminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman,Boston, London (1982) 98–138].

Type
Research Article
Copyright
© EDP Sciences, SMAI 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bal, G., Transport through diffusive and nondiffusive regions, embedded objects and clear layers. SIAM J. Appl. Math. 62 (2002) 16771697. Google Scholar
Bellieud, M., Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: COCV 11 (2005) 266284. Google Scholar
Bellieud, M., A notion of capacity related to elasticity. Applications to homogenization. Arch. Rational Mech. Anal. 203 (2012) 137187. Google Scholar
Bellieud, M., Licht, C. and Orankitjaroen, S., Nonlinear capacitary problems for a non periodic distribution of fibers. Appl. Math. Res. Express 2014 (2014) 151. Google Scholar
F. Boyer and P. Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Math. Appl., vol. 52. Springer Verlag, Berlin, Heidelberg (2006).
C.E. Brennen, Fundamentals of Multiphase Flows. Cambridge University Press (2005).
H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1987).
D. Cioranescu and F. Murat, Un terme étrange venu d’ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar vol. II, Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98–138.
Desvillettes, L., Golse, F. and Ricci, V., The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow. J. Stat. Phys. 131 (2008) 941967. Google Scholar
Fichot, F., Duval, F., Trégourès, N., Béchaud, C. and Quintard, M., The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Design 236 (2006) 21442163. Google Scholar
L’vov, V.A. and Hruslov, E. Ya., Perturbations of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra 267 (1978) 173177. Google Scholar
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968).
A. Mikelic and M. Primicerio, Homogenization of heat conduction in materials with periodic inclusions of a perfect conductor. In Progress in partial differential equations: calculus of variations, applications. Pont-Mousson, 1991, vol. 267 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1992) 244–256.
Mikelic, A., Primicerio, M., Homogenization of the heat equation for a domain with a network of pipes with a well-mixed fluid. Ann. Mat. Pura Appl. 166 (1994) 227251. Google Scholar
Petit, F., Fichot, F., Quintard, M., Ecoulement diphasique en milieu poreux: modèle à non-équilibre local. Int. J. Therm. Sci. 38 (1999) 239249. Google Scholar
P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983.
J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987).