Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:34:15.539Z Has data issue: false hasContentIssue false

Corrector results for a parabolic problemwith a memory effect

Published online by Cambridge University Press:  04 February 2010

Patrizia Donato
Affiliation:
Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Avenue de l'Université, BP 12, 76801 St Étienne du Rouvray, France. [email protected]
Editha C. Jose
Affiliation:
Math Division, Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines. [email protected]
Get access

Abstract

The aim of this paper is to provide the correctors associated to the homogenization of a parabolic problem describing the heat transfer. The results here complete the earlier study in [Jose, Rev. Roumaine Math. Pures Appl.54 (2009) 189–222] on the asymptotic behaviour of a problem in a domain with two components separated by an ε-periodic interface. The physical model established in [Carslaw and Jaeger, The Clarendon Press, Oxford (1947)] prescribes on the interface the condition that the flux of the temperature is proportional to the jump of the temperature field, by a factor of orderεγ . We suppose that -1 < γ ≤ 1. As far as the energies of the homogenized problems are concerned, we consider the cases -1 < γ < 1 and γ = 1 separately. To obtain the convergence of the energies, it is necessary to impose stronger assumptions on the data. As seen in [Jose, Rev. Roumaine Math. Pures Appl.54 (2009) 189–222] and [Faella and Monsurrò, Topics on Mathematics for Smart Systems, World Sci. Publ., Hackensack, USA (2007) 107–121] (also in [Donato et al., J. Math. Pures Appl.87 (2007) 119–143]), the case γ = 1 is more interesting because of the presence of a memory effect in the homogenized problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auriault, J.L. and Ene, H., Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. International J. Heat Mass Transfer 37 (1994) 28852892. CrossRef
A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).
Brahim-Otsman, S., Francfort, G.A. and Murat, F., Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 8 (1992) 197231.
M. Briane, A. Damlamian and P. Donato, H-convergence in Perforated Domains, in Nonlinear Partial Differential Equations and Their Applications – Collège de France Seminar XIII, D. Cioranescu and J.L. Lions Eds., Pitman Research Notes in Mathematics Series 391, Longman, New York, USA (1998) 62–100.
H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids. The Clarendon Press, Oxford, UK (1947).
Cioranescu, D. and Donato, P., Homogénéisation du problème de Neumann non homogène dans des ouverts perforés. Asymptot. Anal. 1 (1988) 115138.
Cioranescu, D. and Donato, P., Exact internal controllability in perforated domains. J. Math. Pures Appl. 68 (1989) 185213.
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications 17. Oxford Univ. Press, New York, USA (1999).
Cioranescu, D. and Saint Jean Paulin, J., Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590607. CrossRef
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999).
Cioranescu, D., Donato, P., Murat, F. and Zuazua, E., Homogenization and corrector for the wave equation in domains with small holes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1999) 251293.
Donato, P., Some corrector results for composites with imperfect interface. Rend. Math. Ser. VII 26 (2006) 189209.
Donato, P. and Monsurrò, S., Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 127. CrossRef
Donato, P. and Nabil, A., Approximate controllability of linear parabolic equations in perforated domains. ESAIM: COCV 6 (2001) 2138. CrossRef
Donato, P. and Nabil, A., Homogenization and correctors for the heat equation in perforated domains. Chin. Ann. Math. B 25 (2004) 143156. CrossRef
Donato, P., Gaudiello, A. and Sgambati, L., Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains. Asymptot. Anal. 16 (1998) 223243.
Donato, P., Faella, L. and Monsurrò, S., Homogenization of the wave equation in composites with imperfect interface: a memory effect. J. Math. Pures Appl. 87 (2007) 119143. CrossRef
Donato, P., Faella, L. and Monsurrò, S., Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 19521978. CrossRef
L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107–121.
Hummel, H.K., Homogenization for heat transfer in polycrystals with interfacial resistances. Appl. Anal. 75 (2000) 403424. CrossRef
Jose, E., Homogenization of a parabolic problem with an imperfect interface. Rev. Roumaine Math. Pures Appl. 54 (2009) 189222.
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Volume 1. Dunod, Paris, France (1968).
Lipton, R., Heat conduction in fine scale mixtures with interfacial contact resistance . SIAM J. Appl. Math. 58 (1998) 5572. CrossRef
Lipton, R. and Vernescu, B., Composite with imperfect interface. Proc. Soc. Lond. A 452 (1996) 329358. CrossRef
Mascarenhas, M.L., Linear homogenization problem with time dependent coefficient. Trans. Amer. Math. Soc. 281 (1984) 179195. CrossRef
Monsurrò, S., Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 4363.
Monsurrò, S., Erratum for the paper “Homogenization of a two-component composite with interfacial thermal barrier” (in Vol. 13, pp. 43–63, 2003). Adv. Math. Sci. Appl. 14 (2004) 375377.
S.E. Pastukhova, Homogenization of nonstationary problems in the theory of elasticity on thin periodic structures from the standpoint of the convergence of hyperbolic semigroups in a variable Hilbert space. Sovrem. Mat. Prilozh. 16, Differ. Uravn. Chast. Proizvod. (2004) 64–97 (Russian). Translation in J. Math. Sci. (N. Y.) 133 (2006) 949–998.
R.E. Showalter, Distributed microstructure models of porous media, in Flow in porous media (Oberwolfach (1992)), J. Douglas and U. Hornung Eds., Internat. Ser. Numer. Math. 114, Birkhäuser, Basel, Switzerland (1993) 155–163.
L. Tartar, Cours Peccot. Collège de France, France, unpublished (1977).
L. Tartar, Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976, Japanese Society for the Promotion of Science (1978) 468–482.
Tartar, L., Memory effects and homogenization. Arch. Rational Mech. Anal. 3 (1990) 121133. CrossRef