Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:58:44.705Z Has data issue: false hasContentIssue false

Approximation ofa semilinear elliptic problemin an unbounded domain

Published online by Cambridge University Press:  15 March 2003

Messaoud Kolli
Affiliation:
Département de Mathématiques, Université Ferhat-Abbas, Sétif 19000, Algérie. [email protected].
Michelle Schatzman
Affiliation:
MAPLY, CNRS, Université Claude Bernard – Lyon 1, 21 Avenue Claude Bernard, 69622 Villeurbanne Cedex, France. [email protected].
Get access

Abstract

Let f be an odd function of a class C2 such that ƒ(1) = 0,ƒ'(0) < 0,ƒ'(1) > 0 and $x\mapsto f(x)/x$ increases on [0,1]. We approximate the positive solution of Δu + ƒ(u) = 0, on $\xR_{+}^{2}$ with homogeneous Dirichlet boundary conditions by thesolution of $-\Delta u_{L}+f(u_{L})=0,$ on ]0,L[2 with adequatenon-homogeneous Dirichlet conditions. We show that the error uL - utends to zero exponentially fast, in the uniform norm.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S. and Cahn, J., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084-1095. CrossRef
H. Brezis, Analyse fonctionnelle. Masson, Paris (1983). Théorie et applications [Theory and applications].
Xinfu Chen, Generation, and propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992) 116-141.
E.A. Coddington and N. Levinson, Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955).
Ha Dang, P.C. Fife, L.A. Peletier, Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43 (1992) 984-998. CrossRef
de Hoog, F.R. and Weiss, R., An approximation theory for boundary value problems on infinite intervals. Computing 24 (1980) 227-239. CrossRef
de Mottoni, P. and Schatzman, M., Development of interfaces in ${\mathbb{R}}\sp {N}$ . Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207-220. CrossRef
de Mottoni, P. and Schatzman, M., Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. CrossRef
Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. CrossRef
Evans, L.C., Soner, H.M. and Souganidis, P.E., Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992) 1097-1123. CrossRef
D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition.
Hagstrom, T.M. and Keller, H.B., Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comp. 48 (1987) 449-470. CrossRef
Hagstrom, T. and Keller, H.B., Exact boundary conditions at an artificial boundary for partial differential equations in cylinders. SIAM J. Math. Anal. 17 (1986) 322-341. CrossRef
Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993) 417-461. CrossRef
A.D. Jepson and H.B. Keller, Steady state and periodic solution paths: their bifurcations and computations, in Numerical methods for bifurcation problems, Dortmund (1983). Birkhäuser, Basel (1984) 219-246.
A. Jepson, Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology (1980).
Markowich, P.A., A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13 (1982) 484-513. CrossRef
Schatzman, M., On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241-1275. CrossRef