Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:13:45.464Z Has data issue: false hasContentIssue false

An iterative procedure to solve a coupled two-fluids turbulence model

Published online by Cambridge University Press:  23 February 2010

Tomas Chacón Rebollo
Affiliation:
Departamento de Ecuaciones Diferenciales y Analisis Numerico, Universidad de Sevilla, Spain.
Stéphane Del Pino
Affiliation:
CEA, DAM, DIF, 91297 Arpajon, France.
Driss Yakoubi
Affiliation:
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris Cedex, France.
Get access

Abstract

This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W 1,p Sobolev norms for p large enough. Under the same assumptions, we show that the limit is a solution of the initial problem. Finally, we give some numerical experiments to enlighten the theoretical work.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.J.F. Adams and R.A. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics Series, Elsevier/Academic Press (2003).
C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathematics & Applications 10. Springer-Verlag (1992).
C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. I. Analysis of the system, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl. 31, Amsterdam, North-Holland (2002) 69–102.
Bernardi, C., Chacón Rebollo, T., Lewandowski, R. and Murat, F., A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal. 40 (2003) 23682394. CrossRef
Bernardi, C., Chacón Rebollo, T., Gómez Mármol, M., Lewandowski, R. and Murat, F., A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math. 98 (2004) 3366. CrossRef
Bernardi, C., Chacón Rebollo, T., Hecht, F. and Lewandowski, R., Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes Equations. Math. Mod. Meth. Appl. Sci. 19 (2009) 11391183. CrossRef
H. Brezis, Analyse Fonctionnelle : Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983).
Brossier, F. and Lewandowski, R., Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: M2AN 36 (2002) 345372. CrossRef
Bryan, K., A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4 (1969) 347369. CrossRef
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Fundamentals in single domains. Springer, Berlin, Germany (2006).
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin, Germany (2007).
S. Del Pino and O. Pironneau, A fictitious domain based on general pde's solvers, in Proc. ECCOMAS 2001, Swansea, K. Morgan Ed., Wiley (2002).
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Germany (1986).
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985).
E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes 5. American Mathematical Society, USA (1999).
B.E. Launder and D.B. Spalding, Mathematical Modeling of Turbulence. Academic Press, London, UK (1972).
Lederer, J. and Lewandowski, R., RANS, A 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 413441. CrossRef
R. Lewandowski, Analyse Mathématique et Océanographie. Collection Recherches en Mathématiques Appliquées, Masson (1997).
Lewandowski, R., The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28 (1997) 393417. CrossRef
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 3, Travaux et Recherches Mathématiques 20. Dunod, Paris, France (1970).
B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. RAM: Research in Applied Mathematics. Masson, Paris (1994).
J. Piquet, Turbulent Flows, Models and Physics. Springer, Germany (1999).
D.C. Wilcox, Turbulence Modeling for CFD. Sixth edition, DCW Industries, inc. California, USA (2006).
D. Yakoubi, Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (2007).