Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T23:13:46.423Z Has data issue: false hasContentIssue false

A posteriori error analysis of the fully discretized time-dependent Stokes equations

Published online by Cambridge University Press:  15 June 2004

Christine Bernardi
Affiliation:
Laboratoire Jacques-Louis Lions, CNRS & Université Pierre et Marie Curie, BC 187, 4 place Jussieu, 75252 Paris Cedex 05, France. [email protected].
Rüdiger Verfürth
Affiliation:
Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany. [email protected].
Get access

Abstract

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear).
Bernardi, C. and Métivet, B., Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425438.
C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251–278.
Bieterman, M. and Babuška, I., The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math. 40 (1982) 339371. CrossRef
Bieterman, M. and Babuška, I., The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373406. CrossRef
Clément, P., Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 7784.
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 4377. CrossRef
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 17291749. CrossRef
V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations. Springer-Verlag, Lect. Notes Math. 749 (1979).
Heywood, J.G. and Rannacher, R., Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353384. CrossRef
Johnson, C., Nie, Y.-Y. and Thomée, V., An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277291. CrossRef
Picasso, M., Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223237. CrossRef
Pousin, J. and Rappaz, J., Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213231. CrossRef
R. Temam, Theory and Numerical Analysis of the Navier–Stokes Equations. North-Holland (1977).
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
Verfürth, R., A posteriori error estimates for nonlinear problems: $L^r(0,T;W^{1,\rho}(\Omega))$ –error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations 14 (1998) 487518. 3.0.CO;2-G>CrossRef
Verfürth, R., A posteriori error estimates for nonlinear problems. $ L^r(0,T;L^{\rho}(\Omega))$ –error estimates for finite element discretizations of parabolic equations. Math. Comp. 67 (1998) 13351360. CrossRef
Verfürth, R., Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695713. CrossRef
R. Verfürth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis 9 (2000) 377–402.