In this paper, we are concerned with the existence of multi-bump solutions for anonlinear Schrödinger equations with electromagnetic fields. We prove under some suitableconditions that for any positive integer m, there existsε(m) > 0 such that, for0 < ε < ε(m),the problem has an m-bump complex-valued solution. As a result, whenε → 0, the equation has more and more multi-bumpcomplex-valued solutions.