Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T12:54:38.821Z Has data issue: false hasContentIssue false

Well-posedness of a class of non-homogeneous boundary valueproblems of the Korteweg-de Vries equation on a finite domain∗∗

Published online by Cambridge University Press:  10 January 2013

Eugene Kramer
Affiliation:
Department of Mathematics, Physics, and Computer Science, Raymond Walters College, University of Cincinnati, Cincinnati, 45236 Ohio, USA. [email protected]
Ivonne Rivas
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, 45221 Ohio, USA; [email protected]; [email protected] IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brasil.
Bing-Yu Zhang
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, 45221 Ohio, USA; [email protected]; [email protected]
Get access

Abstract

In this paper, we study a class of Initial-Boundary Value Problems proposed by Colin andGhidaglia for the Korteweg-de Vries equation posed on a bounded domain(0,L). We show that this class of Initial-Boundary Value Problems islocally well-posed in the classical Sobolev spaceHs(0,L) for s > -3/4, which provides a positive answer to one of the openquestions of Colin and Ghidaglia [Adv. Differ. Equ. 6 (2001)1463–1492].

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T.B., Bona, J.L. and Mahony, J.J., Model equations for long waves in nonlinear dispersive systems. Proc. R. Soc. London A 272 (1972) 4778. Google Scholar
Bona, J.L., Pritchard, W.G. and Scott, L.R., An evaluation of a model equation for water waves. Philos. Trans. Roy. Soc. London Ser. A 302 (1981) 457510. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Amer. Math. Soc. 354 (2002) 427490. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., Forced oscillations of a damped korteweg-de Vries equation in a quarter plane. Commun. Partial Differ. Equ. 5 (2003) 369400. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 13911436. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., Conditional and unconditional well posedness of nonlinear evolution equations. Adv. Differ. Equ. 9 (2004) 241265. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications. Dyn. Partial Differ. Equ. 3 (2006) 169. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Henri Poincaré 25 (2008) 11451185. Google Scholar
Bona, J.L., Sun, S.M. and Zhang, B.-Y., Nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain II. J. Differ. Equ. 247 (2009) 25582596. Google Scholar
Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I : Shrödinger equations. Geom. Funct. Anal. 3 (1993) 107156. Google Scholar
Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II : the KdV-equation. Geom. Funct. Anal. 3 (1993) 209262. Google Scholar
Bubnov, B.A., Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain. Differ. Equ. 15 (1979) 1721. Google Scholar
Bubnov, B.A., Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations. Differ. Equ. 16 (1980) 2430. Google Scholar
Cerpa, E., Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877899. Google Scholar
Cerpa, E. and Crépeau, E., Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Henri Poincaré 26 (2009) 457475. Google Scholar
T. Colin and J.-M. Ghidaglia, Un problème aux limites pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A boundary value problem for the Korteweg-de Vries equation on a bounded interval] Journées équations aux Drives Partielles, Saint-Jean-de-Monts, Exp. No. III, École Polytech., Palaiseau (1997), p. 10.
Colin, T. and Ghidaglia, J.-M., Un problème mixte pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A mixed initial-boundary value problem for the Korteweg-de Vries equation on a bounded interval]. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 599603. Google Scholar
Colin, T. and Ghidaglia, J.-M., An initial-boundary-value problem fo the Korteweg-de Vries equation posed on a finite interval. Adv. Differ. Equ. 6 (2001) 14631492. Google Scholar
Colin, T. and Gisclon, M., An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation. Nonlinear Anal. 46 (2001) 869892. Google Scholar
Colliander, J.E. and Kenig, C., The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equ. 27 (2002) 21872266. Google Scholar
Coron, J.-M. and Crépeau, E., Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6 (2004) 367398. Google Scholar
Faminskii, A.V., On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation, International Conference on Differential and Functional Differential Equations (Moscow, 1999). Funct. Differ. Equ. 8 (2001) 183194. Google Scholar
Faminskii, A.V., Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation. Differ. Integral Equ. 20 (2007) 601642. Google Scholar
Ghidaglia, J.-M., Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time. J. Differ. Equ. 74 (1988) 369390. Google Scholar
Ghidaglia, J.-M., A note on the strong convergence towards attractors of damped forced KdV equations. J. Differ. Equ. 110 (1994) 356359. Google Scholar
Holmer, J., The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31 (2006) 11511190. Google Scholar
Kappeler, T. and Topalov, P., Global well-posedness of KdV in H -1(T,R). Duke Math. J. 135 (2006) 327360. Google Scholar
Kato, T., On the Korteweg-de Vries equation. Manuscr. Math. 28 (1979) 8999. Google Scholar
Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Advances in Mathematics Supplementary Studies, Stud. Appl. Math. 8 (1983) 93128. Google Scholar
Kenig, C., Ponce, G. and Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc. 4 (1991) 323347. Google Scholar
Kenig, C., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equations via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527620 Google Scholar
Kenig, C., Ponce, G. and Vega, L., A bilinear estimate with applicatios to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573603. Google Scholar
Komornik, V., Russell, D.L. and Zhang, B.-Y., Stabilization de l’equation de Korteweg-de Vries. C. R. Acad. Sci. Paris 312 (1991) 841843. Google Scholar
Kramer, E.F. and Zhang, B.-Y., Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain. J. Syst. Sci. Complex 23 (2010) 499526. Google Scholar
Monilet, L., A note on ill-posedness for the KdV equation. Differ. Integral Equ. 24 (2011) 759765. Google Scholar
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation. Int. Math. Res. Not. (2002) 1979–2005.
L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation : the periodic case. arXiv:10054805V1[Math AP] (2010).
Pazoto, A.F., Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM : COCV 11 (2005) 473486. Google Scholar
Pazy, A., Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). Google Scholar
Perla-Menzala, G., Vasconcellos, C.F. and Zuazua, E., Stabilization of the Korteweg-de Vries equation with localized damping. Q. Appl. Math. 60 (2002) 111129. Google Scholar
Rivas, I., Usman, M. and Zhang, B.-Y., Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain. Math. Control Rel. Fields 1 (2011) 6181. Google Scholar
Rosier, L., Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM : COCV 2 (1997) 3355. Google Scholar
Rosier, L. and Zhang, B.-Y., Global stabilization of the generalized Korteweg-de Vries equation. SIAM J. Control Optim. 45 (2006) 927956. Google Scholar
Rosier, L. and Zhang, B.-Y., Control and stabilization of the Korteweg-de Vries equation : recent progresses. J. Syst. Sci. Complex. 22 (2009) 647682. Google Scholar
Russell, D.L. and Zhang, B.-Y., Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659676. Google Scholar
Russell, D.L. and Zhang, B.-Y., Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190 (1995) 449488. Google Scholar
Tartar, L., Interpolation non linéaire et régularité. J. Funct. Anal. 9 (1972) 469489. Google Scholar
B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equations, Proc. of International Conference on Control and Estimation of Distributed Parameter Systems : Nonlinear Phenomena. Vorau, Styria, Austria (1993). International Series of Numer. Math. 118 (1994) 371–389.
Zhang, B.-Y., A remark on the Cauchy problem for the Korteweg de-Vries equation on a periodic domain. Differ. Integral Equ. 8 (1995) 11911204. Google Scholar
Zhang, B.-Y., Analyticity of solutions for the generalized Korteweg de-Vries equation with respect to their initial datum. SIAM J. Math. Anal. 26 (1995) 14881513. Google Scholar
Zhang, B.-Y., Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values. J. Func. Anal. 129 (1995) 293324. Google Scholar
Zhang, B.-Y., Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim. 37 (1999) 543565. Google Scholar