Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:09:13.406Z Has data issue: false hasContentIssue false

Stabilization of Schrödinger equation in exterior domains

Published online by Cambridge University Press:  20 June 2007

Lassaad Aloui
Affiliation:
Département de Mathématiques, Faculté des Sciences de Bizerte, Tunisia; [email protected] LAMSIN, Tunis, Tunisia.
Moez Khenissi
Affiliation:
LAMSIN, Tunis, Tunisia. Département de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia; [email protected]
Get access

Abstract

We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the ExteriorGeometric Control. These estimates are derived from the resolvent properties.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloui, L. and Khenissi, M., Stabilisation de l'équation des ondes dans un domaine extérieur. Rev. Math. Iberoamericana 28 (2002) 116. CrossRef
Burq, N., Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Act. Math. 1 (1998) 129.
Burq, N., Semi-classical estimates for the resolvent in non trapping geometries. Int. Math. Res. Not. 5 (2002) 221241. CrossRef
Jensen, A. and Kato, T., Spectral properties of Schrödinger operators and time decay of the wave functions. Duke Math. J. 46 (1979) 583612. CrossRef
Khenissi, M., Équation des ondes amorties dans un domaine extérieur. Bull. Soc. Math. France 131 (2003) 211228. CrossRef
Melrose, R.B. and Sjostrand, J., Singularities of boundary value problems I. Comm. Pure Appl. Math. 31 (1978) 593617. CrossRef
Morawetz, C.S., Decay for solution of the exterior problem for the wave equation. Comm. Pure Appl. Math. 28 (1975) 229264. CrossRef
Ralston, J., Solution of the wave equation with localized energy. Comm. Pure Appl. Math. 22 (1969) 807823. CrossRef
Rauch, J., Local decay of scattering solutions of Schrödinger-type equation. Comm. Math. Phys. 61 (1978) 149168. CrossRef
M. Reed and B. Simon, Methods of modern mathematical physics, Vol. I: Functional Analysis. New York, Academic Press (1972).
Y. Tsutsumi, Local energy decay of solutions to the free Schrödinger equation in exterior domains. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 31 (1984) 97–108.
Vainberg, B., On the analytical properties of the resolvent for certain class of operator-pencils. Math. USSR-Sb. 6 (1968) 241273. CrossRef
Vainberg, B., On the exterior elliptic problems polynomially depending on a spectral parameters, and asymptotic behaviour for large time of solutions of non stationary problems. Math. USSR-Sb. 21 (1973) 221239. CrossRef
Vainberg, B., On the short wave asymptotic behaviour of solutions of stationary problems and asymptotic behaviour as t $\longrightarrow +\infty $ of solutions of non-stationary problems. Russian Math. Surveys 30 (1975) 158. CrossRef
B. Vainberg, Asymptotic methods in equations of mathematical physics. Gordon and Breach, New York (1988).
Vodev, G., On the uniform decay of the local energy. Serdica Math. J. 25 (1999) 191206.
H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains. Lect. Notes Math. 442, Springer-Verlag (1975).