Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T10:30:28.908Z Has data issue: false hasContentIssue false

The SQP method for control constrained optimal control of the Burgers equation

Published online by Cambridge University Press:  15 August 2002

Fredi Tröltzsch
Affiliation:
Technische Universität Berlin, Fakultät II – Mathematik und Naturwissenschaften, Sekretariat MA 4-5, Straße des 17 Juni 136, 10623 Berlin, Germany; [email protected].
Stefan Volkwein
Affiliation:
Karl–Franzens–Universität Graz, Institut für Mathematik, Heinrichstrasse 36, 8010 Graz, Austria; [email protected].
Get access

Abstract

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are included.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
Alt, W., The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990) 201-224. CrossRef
Bergounioux, M., Ito, K. and Kunisch, K., Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524-1543. CrossRef
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I. Springer-Verlag, Berlin (1992).
A.L. Dontchev, Local analysis of a Newton-type method based on partial linearization, in Proc. of the AMS-SIAM Summer Seminar in Applied Mathematics on Mathematics and Numerical Analysis: Real Number Algorithms, edited by J. Renegar, M. Shub and S. Smale. AMS, Lectures in Appl. Math. 32 (1996) 295-306.
Dontchev, A.L., Hager, W.W., Poore, A.B. and Yang, B., Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31 (1995) 297-326. CrossRef
Goldberg, H. and Tröltzsch, F., On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. Optim. Methods Softw. 8 (1998) 225-247. CrossRef
Heinkenschloss, M. and Tröltzsch, F., Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase-Field Equation. Control Cybernet. 28 (1999) 177-211.
M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 146 (submitted).
M. Hinze and K. Kunisch, Second order methods for time-dependent fluid flow. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 165 (submitted).
Ito, K. and Kunisch, K., Augmented Lagrangian-SQP-Methods for nonlinear optimal control problems of tracking type. SIAM J. Control Optim. 34 (1996) 874-891. CrossRef
K. Kunisch and A. Rösch, Primal-dual strategy for parabolic optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 154 (submitted).
Ly, H.V., Mease, K.D. and Titi, E.S., Some remarks on distributed and boundary control of the viscous Burgers equation. Numer. Funct. Anal. Optim. 18 (1997) 143-188. CrossRef
Robinson, S.M., Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43-62. CrossRef
R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, Stud. Math. Appl. (1979).
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, Appl. Math. Sci. 68 (1988).
Tröltzsch, F., Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 289-306.
Tröltzsch, F., On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38 (1999) 294-312. CrossRef
S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, Ph.D. Thesis. Department of Mathematics, Technical University of Berlin (1997).
Volkwein, S., Augmented Lagrangian-SQP techniques and optimal control problems for the stationary Burgers equation. Comput. Optim. Appl. 16 (2000) 57-81. CrossRef
Volkwein, S., Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18 (2001) 133-158. CrossRef
Volkwein, S., Optimal control of a phase-field model using the proper orthogonal decomposition. Z. Angew. Math. Mech. 81 (2001) 83-97. 3.0.CO;2-R>CrossRef