Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T11:35:30.063Z Has data issue: false hasContentIssue false

Spatially heteroclinic solutions for a semilinear elliptic P.D.E.

Published online by Cambridge University Press:  15 August 2002

Paul H. Rabinowitz*
Affiliation:
Mathematics Department, University of Wisconsin–Madison, U.S.A.; [email protected].
Get access

Abstract

This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangert, V., On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 95-138. CrossRef
Bosetto, E. and Serra, E., A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 673-709. CrossRef
Kirchgässner, K., Wave-solutions of reversible systems and applications. J. Differential Equations 45 (1982) 113-127. CrossRef
Mielke, A., Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Mech. Appl. Sci. 10 (1988) 51-66. CrossRef
Moser, J.K., Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229-272. CrossRef
Rabinowitz, P.H., Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Fac. Sci. Univ. Tokyo 1 (1994) 525-550.
P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math. (to appear).
Turner, R.E.L., Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 4 8 (1981) 513-573.