Published online by Cambridge University Press: 15 March 2005
This paper concerns constrained dynamic optimization problemsgoverned by delay control systems whose dynamic constraints are described by bothdelay-differential inclusions and linear algebraic equations. This is a new class ofoptimal control systems that, on one hand, may be treated as a specific type ofvariational problems for neutral functional-differential inclusions while, on the otherhand, is related to a special class of differential-algebraic systems with a generaldelay-differential inclusion and a linear constraint link between “slow” and “fast”variables. We pursue a twofold goal: to study variational stability for this class ofcontrol systems with respect to discrete approximations and to derive necessaryoptimality conditions for both delayed differential-algebraic systems under considerationand their finite-difference counterparts using modern tools of variational analysis andgeneralized differentiation. The authors are not familiar with any results in thesedirections for such systems even in the delay-free case. In the first part of the paperwe establish the value convergence of discrete approximations as well as the strongconvergence of optimal arcs in the classical Sobolev space W -1,2. Then using discreteapproximations as a vehicle, we derive necessary optimality conditions for the initialcontinuous-time systems in both Euler-Lagrange and Hamiltonian forms via basicgeneralized differential constructions of variational analysis.