Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T02:46:56.487Z Has data issue: false hasContentIssue false

Maxwell strata in sub-Riemannian problemon the group of motions of a plane

Published online by Cambridge University Press:  21 April 2009

Igor Moiseev
Affiliation:
Via G. Giusti 1, Trieste 34100, Italy. [email protected]
Yuri L. Sachkov
Affiliation:
Program Systems Institute, Pereslavl-Zalessky, Russia. [email protected]
Get access

Abstract

The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrachev, A.A., Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Systems 2 (1996) 321358. CrossRef
A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004).
A.M. Bloch, J. Baillieul, P.E. Crouch and J. Marsden, Nonholonomic Mechanics and Control. Springer (2003).
Boscain, U. and Rossi, F., Invariant Carnot-Caratheodory metrics on S3 , SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 18511878. CrossRef
R. Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, P. Hilton and G. Young Eds., Springer-Verlag, New York (1981) 11–27.
El-Alaoui, C., Gauthier, J.P. and Kupka, I., Small sub-Riemannian balls on ${\mathbb R}^3$ . J. Dyn. Control Systems 2 (1996) 359421. CrossRef
V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).
J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture notes in Control and Information Sciences 229. Springer (1998).
Monroy-Perez, F. and Anzaldo-Meneses, A., The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry. J. Dyn. Control Systems 12 (2006) 185216. CrossRef
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002).
Myasnichenko, O., Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Systems 8 (2002) 573597. CrossRef
Myasnichenko, O., Nilpotent (n, n(n+1)/2) sub-Riemannian problem. J. Dyn. Control Systems 12 (2006) 8795. CrossRef
Petitot, J., The neurogeometry of pinwheels as a sub-Riemannian contact stucture. J. Physiology - Paris 97 (2003) 265309. CrossRef
L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962).
Yu.L. Sachkov, Exponential map in the generalized Dido's problem. Mat. Sbornik 194 (2003) 6390 (in Russian). English translation in: Sb. Math. 194 (2003) 1331–1359.
Yu.L. Sachkov, Discrete symmetries in the generalized Dido problem. Mat. Sbornik 197 (2006) 95116 (in Russian). English translation in: Sb. Math. 197 (2006) 235–257.
Yu.L. Sachkov, The Maxwell set in the generalized Dido problem. Mat. Sbornik 197 (2006) 123150 (in Russian). English translation in: Sb. Math. 197 (2006) 595–621. CrossRef
Yu.L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sbornik 197 (2006) 111160 (in Russian). English translation in: Sb. Math. 197 (2006) 901–950. CrossRef
Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 169234. CrossRef
Yu.L. Sachkov, Conjugate points in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 409439. CrossRef
Yu.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (Submitted).
A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems, Geometry of distributions and variational problems (Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5–85. English translation in: Encyclopedia of Mathematical Sciences 16, Dynamical Systems 7, Springer Verlag.
E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996).