Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T19:43:48.437Z Has data issue: false hasContentIssue false

Homogenization of the compressible Navier–Stokes equations in a porous medium

Published online by Cambridge University Press:  15 August 2002

Nader Masmoudi*
Affiliation:
Courant Institute, 251 Mercer Street, New York, NY 10012, USA; [email protected]. Partially supported by NSF grant and an Alfred Sloan fellowship.
Get access

Abstract

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, G., Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222.
Allaire, G., Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. CrossRef
G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123.
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978).
M.E. Bogovski {\u{\i}}\kern.15em , Solutions of some problems of vector analysis, associated with the operators ${\rm div}$ and ${\rm grad}$ , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149.
Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340.
H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155.
Feireisl, E., On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98.
G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems.
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969).
J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981).
P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications.
P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications.
Lipton, R. and Avellaneda, M., Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. CrossRef
N. Masmoudi (in preparation).
Mikelic, A., Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. CrossRef
Nguetseng, G., A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. CrossRef
Nguetseng, G., Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. CrossRef
E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980).
L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377.
R. Temam, Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995).