Published online by Cambridge University Press: 15 March 2005
We study the homogenization of parabolic or hyperbolic equations like \[\rho_\varepsilon{\partial^n u_\varepsilon\over \partial t^n}- {\rm div}(a_\varepsilon\nabla u_\varepsilon) =f \ \ \hbox{ in } \quad {\O\times(0,T)}+\ \ \hbox{\rm boundary conditions}, \quad n \in \{1,2\},\] when the coefficients $\rho_\varepsilon$ , $a_\varepsilon$ (defined in Ω) take possibly high values on a ε-periodic set of grain-like inclusions of vanishing measure.Memory effects arise in the limit problem.