Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:29:04.966Z Has data issue: false hasContentIssue false

A converse to the Lions-Stampacchia Theorem

Published online by Cambridge University Press:  20 August 2008

Emil Ernst
Affiliation:
Aix-Marseille Univ, UMR6632, Marseille, 13397, France. [email protected]
Michel Théra
Affiliation:
XLIM (UMR-CNRS ) and Université de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex, France. [email protected]
Get access

Abstract

In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert spaceadmits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brezis, H., Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115175. CrossRef
G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema die Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei 8 (1964) 91140.
D. Goeleven and D. Motreanu, Variational and Hemivariational Inequalities: Theory, Methods, and Applications. Kluwer Academic Publishers (2003).
Lions, J.-L. and Stampacchia, G., Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493519. CrossRef
J.-L. Lions, E. Magenes, O.G. Mancino and S. Mazzone, Variational Analysis and Applications, in Proceedings of the 38th Conference of the School of Mathematics “G. Stampacchia", in memory of Stampacchia and J.-L. Lions, Erice, June 20–July 1st 2003, F. Giannessi and A. Maugeri Eds., Nonconvex Optimization and its Applications 79, Springer-Verlag, New York (2005).
R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49. American Mathematical Society (1997).