Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T08:21:21.000Z Has data issue: false hasContentIssue false

Control of Transonic Shock Positions

Published online by Cambridge University Press:  15 August 2002

Olivier Pironneau*
Affiliation:
Université Paris VI, IUF and INRIA, France; [email protected].
Get access

Abstract

We wish to show how the shock position in a nozzle could becontrolled. Optimal control theory and algorithm is applied to thetransonic equation. The difficulty is that the derivative withrespect to the shock position involves a Dirac mass. The onedimensional case is solved, the two dimensional one is analyzed .

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F. Hecht, H. Kawarada, C. Bernardi, V. Girault and O. Pironneau, A finite element problem issued from fictitious domain techniques. East-West J. Appl. Math. (2002).
M. Olazabal, E. Godlewski and P.A. Raviart, On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998) 549-570.
J. Necas, Écoulements de fluide : compacité par entropie. Masson, Paris (1989).
L. Landau and F. Lifschitz, Fluid mechanics. MIR Editions, Moscow (1956).
Giles, M.A. and Pierce, N.A., Analytic adjoint solutions for the quasi-one-dimensional euler equations. J. Fluid Mech. 426 (2001) 327-345. CrossRef
B. Mohammadi, Contrôle d'instationnarités en couplage fluide-structure. C. R. Acad. Sci. Sér. IIb Phys. Mécanique, astronomie 327 (1999) 115-118.
Di Cesare, N. and Pironneau, O., Shock sensitivity analysis. Comput. Fluid Dynam. J. 9 (2000) 1-15.
R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984).